Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2021, Number 53, Pages 89–102
DOI: https://doi.org/10.17223/20710410/53/6
(Mi pdm748)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Graph Theory

Algorithms for solving systems of equations over various classes of finite graphs

A. V. Il'eva, V. P. Il'evb

a Sobolev Institute of Mathematics SB RAS, Omsk, Russia
b Dostoevsky Omsk State University, Omsk, Russia
Full-text PDF (743 kB) Citations (1)
References:
Abstract: The aim of the paper is to study and to solve finite systems of equations over finite undirected graphs. Equations over graphs are atomic formulas of the language ${\rm L}$ consisting of the set of constants (graph vertices), the binary vertex adjacency predicate and the equality predicate. It is proved that the problem of checking compatibility of a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ is $\mathcal{NP}$-complete. The computational complexity of the procedure for checking compatibility of a system of equations $S$ over a simple graph $\Gamma$ and the procedure for finding a general solution of this system is calculated. The computational complexity of the algorithm for solving a system of equations $S$ with $k$ variables over an arbitrary simple $n$-vertex graph $\Gamma$ involving these procedures is $O(k^2n^{k/2+1}(k+n)^2)$ for ${n \geq 3}$. Polynomially solvable cases are distinguished: systems of equations over trees, forests, bipartite and complete bipartite graphs. Polynomial time algorithms for solving these systems with running time $O(k^2n(k+n)^2)$ are proposed.
Keywords: graph, system of equations, computational complexity.
Funding agency Grant number
Russian Science Foundation 19-11-00209
Bibliographic databases:
Document Type: Article
UDC: 510.52, 510.67, 519.17
Language: Russian
Citation: A. V. Il'ev, V. P. Il'ev, “Algorithms for solving systems of equations over various classes of finite graphs”, Prikl. Diskr. Mat., 2021, no. 53, 89–102
Citation in format AMSBIB
\Bibitem{IleIle21}
\by A.~V.~Il'ev, V.~P.~Il'ev
\paper Algorithms for solving systems of equations over various classes of finite graphs
\jour Prikl. Diskr. Mat.
\yr 2021
\issue 53
\pages 89--102
\mathnet{http://mi.mathnet.ru/pdm748}
\crossref{https://doi.org/10.17223/20710410/53/6}
\elib{https://elibrary.ru/item.asp?id=46675863}
Linking options:
  • https://www.mathnet.ru/eng/pdm748
  • https://www.mathnet.ru/eng/pdm/y2021/i3/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024