Abstract:
We show that no orthogonal arrays OA(16λ,11,2,4) exist with λ=6 and 7. This solves an open problem of the NSUCRYPTO Olympiad 2018. Our result allows to determine the minimum weights of certain higher order correlation-immune Boolean functions.
Support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme, within the SETIT Project 2018-1.2.1-NKP-2018-00004. Partially supported by NKFIH-OTKA Grants 119687, 115288 and SNN 132625.
Bibliographic databases:
Document Type:
Article
UDC:519.142
Language: English
Citation:
R. Kiss, G. P. Nagy, “On the nonexistence of certain orthogonal arrays of strength four”, Prikl. Diskr. Mat., 2021, no. 52, 65–68
\Bibitem{KisNag21}
\by R.~Kiss, G.~P.~Nagy
\paper On the nonexistence of certain orthogonal arrays of strength four
\jour Prikl. Diskr. Mat.
\yr 2021
\issue 52
\pages 65--68
\mathnet{http://mi.mathnet.ru/pdm737}
\crossref{https://doi.org/10.17223/20710410/52/3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000667023600003}
Linking options:
https://www.mathnet.ru/eng/pdm737
https://www.mathnet.ru/eng/pdm/y2021/i2/p65
This publication is cited in the following 2 articles:
V. A. Idrisova, N. N. Tokareva, A. A. Gorodilova, I. I. Beterov, T. A. Bonich, E. A. Ishchukova, N. A. Kolomeets, A. V. Kutsenko, E. S. Malygina, I. A. Pankratova, M. A. Pudovkina, A. N. Udovenko, “Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO”, PDM, 2023, no. 62, 29–54
A. A. Gorodilova, N. N. Tokareva, S. V. Agievich, I. I. Beterov, T. Beyne, L. Budaghyan, C. Carlet, S. Dhooghe, V. A. Idrisova, N. A. Kolomeec, A. V. Kutsenko, E. S. Malygina, N. Mouha, M. A. Pudovkina, F. Sica, A. N. Udovenko, “An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO””, Sib. elektron. matem. izv., 19:1 (2022), 9–37