Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2021, Number 51, Pages 101–119
DOI: https://doi.org/10.17223/20710410/51/5
(Mi pdm733)
 

Applied Coding Theory

Pyramid scheme for constructing biorthogonal wavelet codes over finite fields

D. V. Litichevskiy

Chelyabinsk state university, Chelyabinsk, Russia
References:
Abstract: The existence of a biorthogonal decomposition of the space $V$ of dimension $n$ over the field $\mathrm{GF}(q)$ is constructively proved, namely, two representations of it are obtained as direct sums of subspaces $V =W_0 \oplus W_1 \oplus \ldots \oplus W_J \oplus V_J$ and $V = \tilde{W}_0 \oplus \tilde{W}_1 \oplus \ldots \oplus \tilde {W}_J \oplus \tilde{V}_J $, such that at the $j$-th level of the decomposition, for $0< j\leq J$, $V_{j-1}=V_j\oplus W_j$, $\tilde{V}_{j-1}= \tilde{V}_j\oplus \tilde{W}_j$, the subspace $V_j$ is orthogonal to $\tilde{W}_j $, and the subspace $W_j$ is orthogonal to $\tilde{V}_j $. The partition of the space at the $j$-th level is made with the help of pairs of level filters $(h^j, g^j)$ and $ (\tilde{h}^ j, \tilde{g}^j)$, for the construction of which the corresponding algorithms have been developed and theoretically proved. A new family of biorthogonal wavelet codes is built on the basis of the multilevel wavelet decomposition scheme with coding rate $2^{-L}$, where $L$ is the number of used decomposition levels, and examples of such codes are given.
Keywords: discrete biorthogonal wavelet transforms, multiresolutions, wavelet codes.
Bibliographic databases:
Document Type: Article
UDC: 519.725
Language: Russian
Citation: D. V. Litichevskiy, “Pyramid scheme for constructing biorthogonal wavelet codes over finite fields”, Prikl. Diskr. Mat., 2021, no. 51, 101–119
Citation in format AMSBIB
\Bibitem{Lit21}
\by D.~V.~Litichevskiy
\paper Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
\jour Prikl. Diskr. Mat.
\yr 2021
\issue 51
\pages 101--119
\mathnet{http://mi.mathnet.ru/pdm733}
\crossref{https://doi.org/10.17223/20710410/51/5}
Linking options:
  • https://www.mathnet.ru/eng/pdm733
  • https://www.mathnet.ru/eng/pdm/y2021/i1/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024