Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2021, Number 51, Pages 9–30
DOI: https://doi.org/10.17223/20710410/51/1
(Mi pdm729)
 

Theoretical Backgrounds of Applied Discrete Mathematics

An algorithm for computing the Stickelberger ideal for multiquadratic number fields

E. A. Kirshanova, E. S. Malygina, S. A. Novoselov, D. O. Olefirenko

Immanuel Kant Baltic Federal University, Kaliningrad, Russia
References:
Abstract: We present an algorithm for computing the Stickelberger ideal for multiquadratic fields $K=\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2},\ldots,\sqrt{d_n})$, where the integers $d_i \equiv 1 \bmod 4$ for $i \in \{1, \ldots, n\} $ or $d_j \equiv 2 \bmod 8$ for one $j \in \{1, \ldots, n \}$; all $d_i$'s are pairwise co-prime and square-free. Our result is based on the paper of Kučera [J. Number Theory, no. 56, 1996]. The algorithm we present works in time $\mathcal{O}(\lg \Delta_K \cdot 2^n \cdot \mathrm{poly}(n) )$, where $\Delta_K$ is the discriminant of $K$. As an interesting application, we show a connection between Stickelberger ideal and the class number of a multiquadratic field.
Keywords: multiquadratic number field, Stickelberger element, Stickelberger ideal, class group of multiquadratic field.
Bibliographic databases:
Document Type: Article
UDC: 511.23
Language: Russian
Citation: E. A. Kirshanova, E. S. Malygina, S. A. Novoselov, D. O. Olefirenko, “An algorithm for computing the Stickelberger ideal for multiquadratic number fields”, Prikl. Diskr. Mat., 2021, no. 51, 9–30
Citation in format AMSBIB
\Bibitem{KirMalNov21}
\by E.~A.~Kirshanova, E.~S.~Malygina, S.~A.~Novoselov, D.~O.~Olefirenko
\paper An algorithm for computing the Stickelberger ideal for multiquadratic number fields
\jour Prikl. Diskr. Mat.
\yr 2021
\issue 51
\pages 9--30
\mathnet{http://mi.mathnet.ru/pdm729}
\crossref{https://doi.org/10.17223/20710410/51/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm729
  • https://www.mathnet.ru/eng/pdm/y2021/i1/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :109
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024