Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2020, Number 50, Pages 102–117
DOI: https://doi.org/10.17223/20710410/50/8
(Mi pdm726)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Backgrounds of Informatics and Programming

Automatic generation of hash functions for program code obfuscation

R. K. Lebedev

Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (843 kB) Citations (1)
References:
Abstract: The specifics of hash function applications in code obfuscation are considered, as well as the disadvantages of currently existing hash functions for this purpose. Considering these specifics and disadvantages, an automatic hash function generation method is proposed, that is based on a genetic programming approach. Methods of measuring the hash function resilience to automated preimage attacks based on SMT solvers usage and random collision resistance are also proposed. Generated functions were evaluated and a method of weak function detection is proposed, that allows to increase the resilience of generated functions to attacks notably.
Keywords: obfuscation, hash function, genetic programming, avalanche effect, SMT solver.
Bibliographic databases:
Document Type: Article
UDC: 004.056.5
Language: Russian
Citation: R. K. Lebedev, “Automatic generation of hash functions for program code obfuscation”, Prikl. Diskr. Mat., 2020, no. 50, 102–117
Citation in format AMSBIB
\Bibitem{Leb20}
\by R.~K.~Lebedev
\paper Automatic generation of hash functions for~program~code~obfuscation
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 50
\pages 102--117
\mathnet{http://mi.mathnet.ru/pdm726}
\crossref{https://doi.org/10.17223/20710410/50/8}
Linking options:
  • https://www.mathnet.ru/eng/pdm726
  • https://www.mathnet.ru/eng/pdm/y2020/i4/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :156
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024