Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2020, Number 49, Pages 5–17
DOI: https://doi.org/10.17223/20710410/49/1
(Mi pdm710)
 

Theoretical Backgrounds of Applied Discrete Mathematics

On images and pre-images in a graph of the composition of independent uniform random mappings

V. O. Mironkin

National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: We study the probability characteristics of the random mapping graph $ f_{\left[k\right]} $ — the composition of $k$ independent equiprobable random mappings $ f_1, \ldots, f_k $, where $f_i\colon \left\{1,\ldots,n\right\}\to \left\{1,\ldots,n\right\}$, $n,k\in\mathbb{N}$, $i=1,\ldots,n$. The following results are obtained. For any fixed $x,y\in S=\{1,\ldots,n\}$, $x\ne y$,
\begin{equation*} \mathbf{P}\{f_{\left[k\right]}(x)=f_{\left[k\right]}(y)\}=\textstyle\sum\limits_{\begin{smallmatrix}s_1,\ldots,s_{k-1}\in\mathbb{N}\colon\\2\geqslant s_1\geqslant\ldots\geqslant s_{k-1} \end{smallmatrix}}\dfrac{q(2,s_{1})}{n^{s_{k-1}-1}}\prod\limits_{i=1}^{k-2}q(s_i,s_{i+1}), \end{equation*}
where $q(a,b)=\text{C}_{n}^{n-b} \left(\dfrac{b}{n}\right)^a \sum\limits_{l=0}^{b}\text{C}_{b}^l(-1)^l\left(1-\dfrac{l}{b}\right)^a$. For any fixed $x\in S$,
\begin{gather*} \mathbf{P}\{ x\in f_{\left[k\right]}(S)\}=\frac1{n}\textstyle\sum\limits_{l=1}^{n}{\left(\dfrac{(n)_l}{n^l} \right)^k}+\\ +\textstyle\sum\limits_{l=1}^{n-2}\sum\limits_{t=1}^{n-l-1}\sum\limits_{m=1}^{n-t-l}(-1)^{m-1}\text{C}_{n-1}^m\sum\limits_{\begin{smallmatrix}s_1,\ldots,s_{k-1}\in\mathbb{N}\colon\\m\geqslant s_1\geqslant\ldots\geqslant s_{k-1} \end{smallmatrix}}\dfrac{q(m,s_{1})}{n^{s_{k-1}}}\prod\limits_{i=1}^{k-2}q(s_i,s_{i+1})V^{\left\{k,m\right\}}_{s_1,\ldots,s_{k-1}}, \end{gather*}
where
\begin{gather*} V^{\left\{k,m\right\}}_{s_1,\ldots,s_{k-1}}=\mathbf{P}\{x\in H_{f_{\left[k\right]}}^{\left(t,l\right)}\bigm| D^{\left\{k\right\}}_{s_1,\ldots,s_{k-1},1}\left(y_1,\ldots,y_m\right),f_{\left[k\right]}\left(y_1\right)=x \}=\\ =\frac{1}{n}\textstyle\prod\limits_{i=m+1}^{t+l+m-1}{\left( 1-\dfrac{i}{n} \right)}\prod\limits_{i=1}^{k-1}\prod\limits_{j=s_i+1}^{t+l+s_i-2}{\left( 1-\dfrac{j}{n} \right)}\sum\limits_{v=0}^{k-1}\prod\limits_{u=1}^{v}{\left( 1-\dfrac{t+l+s_u-1}{n} \right)}, \end{gather*}
$H_f^{\left(t,l\right)}$ is $t$-th layer of cycles of length $l$ in graph $G_f$, $D^{\left\{k\right\}}_{s_1,\ldots,s_{k}}(y_1,\ldots,y_m)=\textstyle\bigcap\limits_{i=1}^{k} \{|\{f_{\left[i\right]}(y_1),\ldots,f_{\left[i\right]}(y_m)\}|=s_i\}$, and $(n)_z=n(n-1)\dots(n-z+1)$. For any fixed $x\in S\setminus S'$ and for any $r\in \{1,\ldots,n-1\}$, $S'\subseteq S$, $|S'|=r$, $z\in \{1,\ldots,n\}$,
\begin{gather*} \mathbf{P}\{\tau_{f_{\left[k\right]}}(x)=z,\mathcal{R}_{f_{\left[k\right]}}(x)\cap S'=\varnothing \}=\\ =\left(1-\left(1-\frac{z}{n}\right)\left( 1-\frac{z-1}{n} \right)^{k-1}\right)\left(\frac{\left(n\right)_{z-1}}{n^{z-1}} \right)^{k-1}\frac{\left(n\right)_{r+z}}{n^{z-1}\left(n\right)_{r+1}}, \end{gather*}
where $\mathcal{R}_{f_{\left[k\right]}}(x)$ is the aperiodicity segment of vertex $x$ in the graph of mapping $f_{\left[k\right]}$, $\tau_{f_{\left[k\right]}}(x)=\min\{ t\in \mathbb{N}\colon {f_{\left[k\right]}}^t(x)\in \{ x,{f_{\left[k\right]}}(x),\dots,{f_{\left[k\right]}}^{t-1}(x) \}\}$. For any fixed $x,y\in S$, $x\ne y$, and for any $r\in\{1,\ldots,n\}$,
\begin{equation*} \mathbf{P}\{y \in (f_{\left[k\right]})^{-r}(x)\}=\frac1n\left(1-\frac1{n-1}\textstyle\sum\limits_{z\in Q_r\setminus\{1\}}\left(\dfrac{(n)_z}{n^z}\right)^k\right), \end{equation*}
where $Q_r=\{m\in \mathbb{N}\colon m|r\}$.
Keywords: equiprobable random mapping, composition of mappings, graph of a mapping, image of a multitude, pre-image of a vertex, initial vertex, layer in a graph, aperiodicity segment, collision.
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.719.2
Language: Russian
Citation: V. O. Mironkin, “On images and pre-images in a graph of the composition of independent uniform random mappings”, Prikl. Diskr. Mat., 2020, no. 49, 5–17
Citation in format AMSBIB
\Bibitem{Mir20}
\by V.~O.~Mironkin
\paper On images and pre-images in a graph of the composition of independent uniform random mappings
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 49
\pages 5--17
\mathnet{http://mi.mathnet.ru/pdm710}
\crossref{https://doi.org/10.17223/20710410/49/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm710
  • https://www.mathnet.ru/eng/pdm/y2020/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :30
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024