Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2020, Number 48, Pages 16–21
DOI: https://doi.org/10.17223/20710410/48/2
(Mi pdm701)
 

This article is cited in 6 scientific papers (total in 6 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

One-to-one correspondense between proper families of Boolean functions and unique sink orientations of cubes

K. D. Tsaregorodtsev

Moscow State University, Moscow, Russia
Full-text PDF (630 kB) Citations (6)
References:
Abstract: In the paper, we study the relationship between proper families of Boolean functions and unique sink orientations of Boolean cubes. A family of Boolean functions $ F = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))$ is called proper if for every two binary vectors $\alpha, \beta$, $\alpha \ne \beta$, the following condition holds:
$$ \exists i (\alpha_i \ne \beta_i\ \&\ f_i(\alpha) = f_i(\beta)).$$
Unique sink orientation of Boolean cube $\mathbb{E}_n$ is such an orientation of edges of $\mathbb{E}_n$ that any subcube of $\mathbb{E}_n$ has a unique sink, i.e., a unique vertex without outgoing edges. The existence of one-to-one correspondence between two classes of objects is proved, and various properties are derived for proper families. The following boundary for the number $T(n)$ of proper families of given size $n$ is obtained: there exist two numbers $B$ and $A$, $B \ge A > 0$, such that $n^{A 2^n} \le T(n) \le n^{B 2^n}$ for $n \ge 2$. Also, coNP-completeness of the problem of recognizing properness is derived.
Keywords: proper families of Boolean functions, unique sink orientations.
Bibliographic databases:
Document Type: Article
UDC: 519.1+512.5
Language: Russian
Citation: K. D. Tsaregorodtsev, “One-to-one correspondense between proper families of Boolean functions and unique sink orientations of cubes”, Prikl. Diskr. Mat., 2020, no. 48, 16–21
Citation in format AMSBIB
\Bibitem{Tsa20}
\by K.~D.~Tsaregorodtsev
\paper One-to-one correspondense between proper families of~Boolean functions and unique sink orientations of~cubes
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 48
\pages 16--21
\mathnet{http://mi.mathnet.ru/pdm701}
\crossref{https://doi.org/10.17223/20710410/48/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm701
  • https://www.mathnet.ru/eng/pdm/y2020/i2/p16
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :88
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024