Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2020, Number 47, Pages 87–100
DOI: https://doi.org/10.17223/20710410/47/7
(Mi pdm696)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Graph Theory

A computation of the shortest paths in optimal two-dimensional circulant networks

E. A. Monakhova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
Full-text PDF (985 kB) Citations (1)
References:
Abstract: A family of tight optimal two-dimensional circulant networks designed by analytical formulas has a description of the form $C(N;d,d+1)$, where $N$ is the order of a graph and the generator $d$ is the nearest integer to $(\sqrt {2N-1}-1)/2$. For this family, two new improved versions of a shortest-path routing algorithm with a complexity $O(1)$ are presented. Simple proofs for formulas used for routing algorithms based on the plane tessellation are received. In the routing algorithm, for a graph $C(N;d,d+1)$ the following formulas for the computing shortest routing vector $(x,y)$ from 0 to a node $k\le \lfloor N/2 \rfloor$ are used: if $k\bmod(d+1)=0$ or $\lfloor k/(d+1)\rfloor<d+1-2k\bmod(d+1)$, then $x=-k\bmod(d+1)$, $y=\lfloor k/(d+1)\rfloor -x$, else $x=-k\bmod(d+1)+d+1$, $y= =\lfloor k/(d+1)\rfloor-x+1$. The routing algorithms and their estimates are considered for using in topologies of networks-on-chip. For implementation in networks-on-chip the proposed routing algorithm requires $ \lceil \log_{2}N \rceil+ \lceil \log_{2}\lceil \sqrt{N/2} \rceil \rceil$ bits. New versions of the routing algorithm improve also the routing algorithm proposed early by the author for optimal generalized Petersen graphs with an analytical description of the form $P(N,a,a+1)$, where $2N$ is the order of a graph and $a = \lceil \sqrt{(N-1)/2} \rceil-1$.
Keywords: two-dimensional circulant networks, diameter, shortest paths, optimal generalized Petersen graphs, networks-on-chip.
Bibliographic databases:
Document Type: Article
UDC: 519.87
Language: Russian
Citation: E. A. Monakhova, “A computation of the shortest paths in optimal two-dimensional circulant networks”, Prikl. Diskr. Mat., 2020, no. 47, 87–100
Citation in format AMSBIB
\Bibitem{Mon20}
\by E.~A.~Monakhova
\paper A computation of the shortest paths in optimal two-dimensional circulant networks
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 47
\pages 87--100
\mathnet{http://mi.mathnet.ru/pdm696}
\crossref{https://doi.org/10.17223/20710410/47/7}
Linking options:
  • https://www.mathnet.ru/eng/pdm696
  • https://www.mathnet.ru/eng/pdm/y2020/i1/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :149
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024