Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2020, Number 47, Pages 16–21
DOI: https://doi.org/10.17223/20710410/47/2
(Mi pdm691)
 

This article is cited in 2 scientific papers (total in 2 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

A note on the properties of associated Boolean functions of quadratic APN functions

A. A. Gorodilovaab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (628 kB) Citations (2)
References:
Abstract: Let $F$ be a quadratic APN function in $n$ variables. The associated Boolean function $\gamma_F$ in $2n$ variables ($\gamma_F(a,b)=1$ if $a\neq\mathbf{0}$ and equation $F(x)+F(x+a)=b$ has solutions) has the form $\gamma_F(a,b) = \Phi_F(a) \cdot b + \varphi_F(a) + 1$ for appropriate functions $\Phi_F:\mathbb{F}_2^n\to \mathbb{F}_2^n$ and $\varphi_F:\mathbb{F}_2^n\to \mathbb{F}_2$. We summarize the known results and prove new ones regarding properties of $\Phi_F$ and $\varphi_F$. For instance, we prove that degree of $\Phi_F$ is either $n$ or less or equal to $n-2$. Based on computation experiments, we formulate a conjecture that degree of any component function of $\Phi_F$ is $n-2$. We show that this conjecture is based on two other conjectures of independent interest.
Keywords: a quadratic APN function, the associated Boolean function, degree of a function.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00479
18-07-01394_а
Siberian Branch of Russian Academy of Sciences I.5.1, project no. 0314-2019-0017
The work was funded by RFBR (projects no. 18-31-00479, 18-07-01394); by the program of fundamental scientific researches of the SB RAS no. I.5.1, project no. 0314-2019-0017; Regional Mathematical Center NSU and Laboratory of cryptography JetBrains Research.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: English
Citation: A. A. Gorodilova, “A note on the properties of associated Boolean functions of quadratic APN functions”, Prikl. Diskr. Mat., 2020, no. 47, 16–21
Citation in format AMSBIB
\Bibitem{Gor20}
\by A.~A.~Gorodilova
\paper A note on the properties of associated Boolean functions of quadratic APN functions
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 47
\pages 16--21
\mathnet{http://mi.mathnet.ru/pdm691}
\crossref{https://doi.org/10.17223/20710410/47/2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520869800002}
Linking options:
  • https://www.mathnet.ru/eng/pdm691
  • https://www.mathnet.ru/eng/pdm/y2020/i1/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :94
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024