Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 46, Pages 88–107
DOI: https://doi.org/10.17223/20710410/46/8
(Mi pdm687)
 

Computational Methods in Discrete Mathematics

Computation of a determinant and a matrix product in cellular automata

V. S. Kozhevnikova, I. V. Matyushkinb

a Moscow Institute of Physics and Technology, Dolgoprudny, Russia
b National Research University of Electronic Technology, Moscow, Russia
References:
Abstract: In the paper, possible implementations in cellular automata of matrix–vector multiplication, matrix multiplication, and determinant computation are described. The algorithms are formalised in terms of a cellular automaton model using a two-dimensional field with closed boundaries and von Neumann neighbourhood. The proposed algorithms are notable for isolated calculations (meaning that no data is entered during the computation process), which is a feature of a classical cellular automaton as opposed to a systolic array. Matrix multiplication is implemented for two square matrices as well as specifically for a matrix and a column vector, the latter implementation using less control flag states and therefore less additional memory. The matrix multiplication algorithm adapts Katona's scheme for matrix multiplication in a systolic array to an isolated cellular automaton. For calculation of a determinant, two algorithms based on Gaussian elimination are proposed. One has linear complexity and uses a control flag with only 5 states, being, however, inapplicable to an arbitrary matrix. The other one is modified to seek the largest leading element during row reduction, which makes its complexity quadratic and its control flags assume 11 states but allows the algorithm to be applied to an arbitrary matrix and be more numerically stable.
Keywords: cellular automaton, determinant, matrix multiplication, parallel computing.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: V. S. Kozhevnikov, I. V. Matyushkin, “Computation of a determinant and a matrix product in cellular automata”, Prikl. Diskr. Mat., 2019, no. 46, 88–107
Citation in format AMSBIB
\Bibitem{KozMat19}
\by V.~S.~Kozhevnikov, I.~V.~Matyushkin
\paper Computation of a determinant and a matrix product in~cellular automata
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 46
\pages 88--107
\mathnet{http://mi.mathnet.ru/pdm687}
\crossref{https://doi.org/10.17223/20710410/46/8}
Linking options:
  • https://www.mathnet.ru/eng/pdm687
  • https://www.mathnet.ru/eng/pdm/y2019/i4/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :234
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024