Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 46, Pages 78–87
DOI: https://doi.org/10.17223/20710410/46/7
(Mi pdm686)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational Methods in Discrete Mathematics

Algorithms for computing cryptographic characteristics of vectorial Boolean functions

N. M. Kiseleva, E. S. Lipatova, I. A. Pankratova, E. E. Trifonova

National Research Tomsk State University, Tomsk, Russia
Full-text PDF (712 kB) Citations (1)
References:
Abstract: There are presented algorithms for calculating the cryptographic characteristics of vectorial Boolean functions, such as the order of correlation immunity, nonlinearity, component algebraic immunity, and differential uniformity order. In these algorithms, the components of a vectorial Boolean function are enumerated according to the Gray code. Experimental results are given for random vectorial Boolean functions, permutations, and two known classes $\mathcal{K}_{n}$ and $\mathcal{S}_{n,k}$ of invertible vectorial Boolean functions in $n$ variables with coordinates essentially depending on all variables and on $k$ variables, $k<n$, respectively. Some properties of differential uniformity are theoretically proved for functions in $\mathcal{K}_{n}$ and $\mathcal{S}_{n,k} $, namely, the differential uniformity order $\delta_F$ equals $2^n$ for any $F\in\mathcal{S}_{n,k}$, and the inequality $2^n-4(n-1)\leq\delta_F\leq 2^n-4$ holds for any $F\in\mathcal{K}_{n}$.
Keywords: vectorial Boolean function, nonlinearity, correlation immunity, component algebraic immunity, differential uniformity.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00354_а
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: N. M. Kiseleva, E. S. Lipatova, I. A. Pankratova, E. E. Trifonova, “Algorithms for computing cryptographic characteristics of vectorial Boolean functions”, Prikl. Diskr. Mat., 2019, no. 46, 78–87
Citation in format AMSBIB
\Bibitem{KisLipPan19}
\by N.~M.~Kiseleva, E.~S.~Lipatova, I.~A.~Pankratova, E.~E.~Trifonova
\paper Algorithms for computing cryptographic characteristics of vectorial Boolean functions
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 46
\pages 78--87
\mathnet{http://mi.mathnet.ru/pdm686}
\crossref{https://doi.org/10.17223/20710410/46/7}
Linking options:
  • https://www.mathnet.ru/eng/pdm686
  • https://www.mathnet.ru/eng/pdm/y2019/i4/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :104
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024