Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 46, Pages 19–26
DOI: https://doi.org/10.17223/20710410/46/2
(Mi pdm681)
 

Theoretical Backgrounds of Applied Discrete Mathematics

$2$-Transitivity degree for one class of substitutions over finite fields

D. H. Hernández Piloto

Certification Research Center, Moscow, Russia
References:
Abstract: The paper deals with the class of substitutions proposed by A. V. Abornev, constructed using digit functions $\gamma_1$ over the ring $\mathbb{Z}_{p^2}$ of the form $h(\vec{x})=\vec{z}$, where $\vec{z}=\vec{z}_1+p\vec{z}_2 $, $(\vec{z}_1 | \vec{z}_2)=\gamma_1(\vec{x}K)$ and $K$ is a matrix of dimensions $m\times2m$. We consider a generalization of this class of substitutions using arbitrary functions $F:P^{m}\rightarrow P^{m}$ over finite field $P$ in the place of the digit functions $\gamma_1$. A set $\Sigma$ is called $2$-transitive if for any pairs $\alpha=(a_1,a_2)$, $\beta=(b_1,b_2)$ in $\Sigma$ there exists a substitution $g$, such that $g(a_i)=b_i$, $i \in \{1,2\}$. We are interested in the degree of $2$-transitivity of a group $\Sigma$, denoted by $d_2(\Sigma)$, which is equal to the smallest natural value $k$, such that $(\Sigma)^k$ is a $2$-transitive group. The main goal is to find groups of substitutions with the minimum of this parameter. Using our construction, it is demonstrated that the degree of $2$-transitivity is lower bounded by $4$. When $F(x+a)-F(x)$ is a substitution for any $a\in P^m \backslash \{\mathbf{0}\}$, the degree of $2$-transitivity of the composition $\Sigma h$ is equal to $4$. In other papers these functions were called planar. Notice that in a field with characteristic $2$ planar functions do not exist. If the characteristic is not $2$, then these functions exist. Indeed, if $Q$ is an extension of degree $m$ of $P$, $\hat F(x)=x^2$ for all $x\in Q$, and $\alpha_1,\ldots,\alpha_m$ is the base of the vector space $Q_P$, then the function $F(x_1,\ldots, x_m)=\hat F(\alpha_1x_1+\ldots+\alpha_mx_m)$, $x_1,\ldots,x_m\in P$, is planar.
Keywords: transitivity, degree of $2$-transitivity, digit function, regular group, substitution.
Bibliographic databases:
Document Type: Article
UDC: 621.391:519.7+621.391.1:004.7
Language: Russian
Citation: D. H. Hernández Piloto, “$2$-Transitivity degree for one class of substitutions over finite fields”, Prikl. Diskr. Mat., 2019, no. 46, 19–26
Citation in format AMSBIB
\Bibitem{Her19}
\by D.~H.~Hern\'andez Piloto
\paper $2$-Transitivity degree for one class of~substitutions over finite fields
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 46
\pages 19--26
\mathnet{http://mi.mathnet.ru/pdm681}
\crossref{https://doi.org/10.17223/20710410/46/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm681
  • https://www.mathnet.ru/eng/pdm/y2019/i4/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :49
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024