Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2009, supplement № 1, Pages 12–13 (Mi pdm68)  

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

About tseitin's transformation in logical equations

A. A. Semenov
Full-text PDF (419 kB) Citations (1)
References:
Abstract: The report is supposed to touch upon a number of theoretical and applied issues of propositional logic. The issues share the common methodology which includes in its basis rather easy conversions of logical equations. Today science calls this kind of conversions ‘`Tseitin’s transformation’’.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. A. Semenov, “About tseitin's transformation in logical equations”, Prikl. Diskr. Mat., 2009, supplement № 1, 12–13
Citation in format AMSBIB
\Bibitem{Sem09}
\by A.~A.~Semenov
\paper About tseitin's transformation in logical equations
\jour Prikl. Diskr. Mat.
\yr 2009
\pages 12--13
\issueinfo supplement № 1
\mathnet{http://mi.mathnet.ru/pdm68}
Linking options:
  • https://www.mathnet.ru/eng/pdm68
  • https://www.mathnet.ru/eng/pdm/y2009/i10/p12
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :95
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024