Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 44, Pages 94–106
DOI: https://doi.org/10.17223/20710410/44/7
(Mi pdm663)
 

Applied Coding Theory

On list decoding of wavelet codes over finite fields of characteristic two

D. V. Litichevskiy

Chelyabinsk State University, Chelyabinsk, Russia
References:
Abstract: In this paper, we consider wavelet code defined over the field $\mathrm{GF}(2^m)$ with the code length $n =2^m-1$ and information words length $(n-1)/{2} $ and prove that a wavelet code allows list decoding in polynomial time if there are $d + 1$ consecutive zeros among the coefficients of the spectral representation of its generating polynomial and $0<d<(n-3)/{2}$. The steps of the algorithm that performs list decoding with correction up to $e<n-\sqrt{n(n-d-2)}$ errors are implemented as a program. Examples of its use for list decoding of noisy code words are given. It is also noted that the Varshamov–Hilbert inequality for sufficiently large $n$ does not allow to judge about the existence of wavelet codes with a maximum code distance $(n-1)/{2}$.
Keywords: wavelet codes, polyphase coding, list decoding.
Bibliographic databases:
Document Type: Article
UDC: 519.725
Language: Russian
Citation: D. V. Litichevskiy, “On list decoding of wavelet codes over finite fields of characteristic two”, Prikl. Diskr. Mat., 2019, no. 44, 94–106
Citation in format AMSBIB
\Bibitem{Lit19}
\by D.~V.~Litichevskiy
\paper On list decoding of wavelet codes over finite fields of~characteristic two
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 44
\pages 94--106
\mathnet{http://mi.mathnet.ru/pdm663}
\crossref{https://doi.org/10.17223/20710410/44/7}
\elib{https://elibrary.ru/item.asp?id=38555964}
Linking options:
  • https://www.mathnet.ru/eng/pdm663
  • https://www.mathnet.ru/eng/pdm/y2019/i2/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024