Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 44, Pages 34–42
DOI: https://doi.org/10.17223/20710410/44/3
(Mi pdm659)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical Methods of Cryptography

Cryptanalytic concept of finite automaton invertibility with finite delay

G. P. Agibalov

National Research Tomsk State University, Tomsk, Russia
Full-text PDF (199 kB) Citations (5)
References:
Abstract: The automaton invertibility with a finite delay plays a very important role in the analysis and synthesis of finite automata cryptographic systems. The automaton cryptanalitic invertibility with a finite delay $\tau$ is studied in the paper. From the cryptanalyst's point of view, this notion means the theoretical possibility for recovering, under some conditions, a prefix $\alpha$ of a length $n$ in an unknown input sequence $\alpha\delta$ of an automaton from its output sequence $\gamma$ of the length $n+\tau$ and perhaps an additional information such as parameters $\tau$ and $n$, initial ($q$), intermediate ($\theta$) or final ($t$) state of the automaton or the suffix $\delta$ of the length $\tau$ in the input sequence. The conditions imposed on the recovering algorithm require for prefix $\alpha$ to be arbitrary and may require for the initial state $q$ and suffix $\delta$ to be arbitrary or existent, that is, the variable $\alpha$ is always bound by the universal quantifier and each of variables $q$ and $\delta$ may be bound by any of quantifiers — universal ($\forall$) or existential ($\exists$) one. The variety of information, which can be known to a cryptanalyst, provides many different types of the automaton invertibility and, respectively, many different classes of invertible automata. Thus, in the paper, an invertibility with a finite delay $\tau$ of a finite automaton $A$ is the ability of this automaton to resist recovering or, on the contrary, to allow precise determining any input word $\alpha$ of a length $n$ for the output word $\gamma$ being the result of transforming by the automaton $A$ in its initial state $q$ the input word $\alpha\delta$ with the $\delta$ of length $\tau$ and with the known $n, \tau, A, \gamma$ and $\upsilon\subseteq \{\delta, q, \theta, t\}$ where $q$ and $\delta$ may be arbitrary or some elements in their sets and $\theta $ and $t$ are respectively intermediate and final states of $A$ into which $A$ comes from $q$ under acting of input words $\alpha$ and $\alpha\delta$ respectively. According to this, the automaton $A$ is called invertible with a delay $\tau$ if there exists a function $f(\gamma, \upsilon)$ and a triplet of quantifiers $\varkappa\in\{Q_1x_1Q_2x_2Q_3x_3: Q_ix_i \in\{\forall q, \exists q, \forall\alpha, \forall\delta, \exists\delta\}, i \neq j \Rightarrow x_i \neq x_j\}$ such that $\varkappa[f(\gamma, \upsilon)= \alpha]$; in this case $f$ is called a recovering function, $(\varkappa, \upsilon)$ — an invertibility type, $\varkappa$ — an invertibility degree, $\upsilon$ — an invertibility order of the automaton $A$ and $\exists f \varkappa[f(\gamma, \upsilon)= \alpha]$ — an invertibility condition of type $(\varkappa, \upsilon)$ for the automaton $A$. So, 208 different types of the automaton $A$ invertibility are defined at all. The well known types of (strong) invertibility and weak invertibility described for finite automata earlier by scientists (D. A. Huffman, A. Gill, Sh. Even, A. A. Kurmit, Z. D. Dai, D. F. Ye, K. Y. Lam, R. Tao and many others) in our theory belong to types $(\forall q\forall\alpha\forall\delta, \emptyset)$ and $(\forall q\forall\alpha\forall\delta, \{q\})$ respectively. For every invertibility type, we have defined a class of automata with this type of invertibility and described the inclusion relation on the set of all these classes. It has turned out that the graph of this relation is the union of twenty nine lattices with thirteen of them each containing sixteen classes and sixteen lattices each containing thirteen classes. To solve the scientific problems (invertability tests, synthesis of inverse automata and so on) related to the different and concrete invertibility classes, we hope to continue these investigations.
Keywords: finite automata, information-lossless automata, automata invertibility, cryptanalytic invertibility.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00354_а
The author is supported by the RFBR-grant no. 17-01-00354.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: English
Citation: G. P. Agibalov, “Cryptanalytic concept of finite automaton invertibility with finite delay”, Prikl. Diskr. Mat., 2019, no. 44, 34–42
Citation in format AMSBIB
\Bibitem{Agi19}
\by G.~P.~Agibalov
\paper Cryptanalytic concept of~finite~automaton invertibility with finite delay
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 44
\pages 34--42
\mathnet{http://mi.mathnet.ru/pdm659}
\crossref{https://doi.org/10.17223/20710410/44/3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000476644400003}
\elib{https://elibrary.ru/item.asp?id=38555960}
Linking options:
  • https://www.mathnet.ru/eng/pdm659
  • https://www.mathnet.ru/eng/pdm/y2019/i2/p34
    See also
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024