Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 43, Pages 115–123
DOI: https://doi.org/10.17223/20710410/43/8
(Mi pdm656)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Graph Theory

On improved universal estimation of exponents of digraphs

V. M. Fomichevabc

a Financial University under the Government of the Russian Federation, Moscow, Russia
b National Research Nuclear University Moscow Engineering Physics Institute, Moscow, Russia
c The Institute of Informatics Problems of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (688 kB) Citations (1)
References:
Abstract: An improved formula for universal estimation of exponent is obtained for $n$-vertex primitive digraphs. A previous formula by A. L. Dulmage and N. S. Mendelsohn (1964) is based on a system $\hat{C}$ of directed circuits $C_1,\ldots,C_m$, which are held in a graph and have lengths $l_1,\ldots,l_m$ with $\gcd(l_1,\ldots,l_m)=1$. A new formula is based on a similar circuit system $\hat{C}$, where $\gcd(l_1,\ldots,l_m)=d\geq 1$. Also, the new formula uses $r_{i,j}^{s/d}(\hat{C})$, that is the length of the shortest path from $i$ to $j$ going through the circuit system $\hat{C}$ and having the length which is comparable to $s$ modulo $d$, $s=0,\ldots,d-1$. It is shown, that $\text{exp}\,\Gamma\leq 1+\hat{F}(L(\hat{C}))+R(\hat{C})$, where $\hat{F}(L)=d\cdot F(l_1/d,\ldots, l_m/d)$ and $F(a_1,\ldots,a_m)$ is the Frobenius number, $R(\hat{C})=\max_{(i,j)}\max_s\{r_{i,j}^{s/d}(\hat{C})\}$. For some class of $2k$-vertex primitive digraphs, it is proved, that the improved formula gives the value of estimation $2k$, and the previous formula gives the value of estimation $3k-2$.
Keywords: the Frobenius number, primitive graph, exponent of graph.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226_а
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. M. Fomichev, “On improved universal estimation of exponents of digraphs”, Prikl. Diskr. Mat., 2019, no. 43, 115–123
Citation in format AMSBIB
\Bibitem{Fom19}
\by V.~M.~Fomichev
\paper On improved universal estimation of exponents of~digraphs
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 43
\pages 115--123
\mathnet{http://mi.mathnet.ru/pdm656}
\crossref{https://doi.org/10.17223/20710410/43/8}
\elib{https://elibrary.ru/item.asp?id=37279961}
Linking options:
  • https://www.mathnet.ru/eng/pdm656
  • https://www.mathnet.ru/eng/pdm/y2019/i1/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024