Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 43, Pages 101–114
DOI: https://doi.org/10.17223/20710410/43/7
(Mi pdm655)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Graph Theory

On properties of primitive sets of digraphs with common cycles

Y. E. Avezova

National Research Nuclear University Moscow Engineering Physics Institute, Moscow, Russia
Full-text PDF (794 kB) Citations (1)
References:
Abstract: Let $\hat{\Gamma}=\{\Gamma_1,\ldots,\Gamma_p\}$ be a set of digraphs with vertex set $V$, $p>1$, and $U^{(p)}$ be the union of digraphs $\Gamma_1\cup\ldots\cup\Gamma_p$ with no multiple arcs. The smallest number such that the union of $\mu$ digraphs of the set $\hat{\Gamma}$ contains all arcs of $U^{(p)}$ is denoted by $\mu$. Suppose $\hat{C}=\{C_1,\ldots,C_m\}$ is a set of elementary cycles. This set is called common for $\hat{\Gamma}$ if every digraph of the set $\hat{\Gamma}$ contains all cycles of the set $\hat{C}$. Assume that $C_1^*\cup\ldots\cup C_m^*=V$ where $C_i^*$ denotes the vertex set of $C_i$, $i=1,\ldots,m$. For a given digraph $\Gamma$, the loop-character index in the semigroup $\langle \Gamma \rangle$ is the smallest integer $h$ for which there is a loop on every vertex of $\Gamma^h$. In this paper, we study conditions for the set of digraphs with common cycles to be primitive. For $m\geq 1$, the set $\hat{\Gamma}$ with common cycles set $\hat{C}$ is primitive if and only if the digraph $U^{(p)}$ is primitive. If $\hat{\Gamma}$ is primitive, then $\text{exp}\,\hat{\Gamma} \leq \bigl((\mu-1)h+1\bigr)\text{exp}\,U^{(p)}$, where $h$ is the loop-character index in the semigroup $\langle \Gamma(\hat{C})\rangle$, $\Gamma(\hat{C})=C_1\cup\ldots\cup C_m$. For $m=1$, we establish an improved bound on the exponent. Let all digraphs of the primitive set $\hat{\Gamma}$ have a common Hamiltonian cycle, then $\text{exp}\,\hat{\Gamma} \leq(2n-1)\mu+\sum\limits_{\tau=1}^\mu{\bigl(F(l_1^\tau,\ldots,l_{m(\tau)}^\tau)+d_\tau-l_1^\tau\bigr)}$, where $l_1^\tau,\ldots,l_{m(\tau)}^\tau$ are all cycle lengths in $\Gamma_\tau$, ordered so that $l_1^\tau<\ldots<l_{m(\tau)}^\tau=n$, $d_\tau=\text{gcd}(l_1^\tau,\ldots,l_{m(\tau)}^\tau)$, $F(l_1^\tau,\ldots,l_{m(\tau)}^\tau)=d_\tau\Phi(l_1^\tau/ d_\tau,\ldots,l_{m(\tau)}^\tau/ d_\tau)$, $\Phi(l_1^\tau/ d_\tau,\ldots,l_{m(\tau)}^\tau/d_\tau)$ denotes the Frobenius number, $\tau=1,\ldots,\mu$. Finally, if $n=q^{\alpha}$, $q$ is prime, $\alpha\in \mathbb{N}$, $m=n^2$, then the number of primitive sets of $n$-vertex digraphs with a common Hamiltonian cycle equals $2^\sigma-2^\varepsilon$, where $\sigma=2^{m-n}$, $\varepsilon=2^{m/q-n}$.
Keywords: Hamiltonian digraph, primitive set of digraps, exponent of digraphs set.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: Y. E. Avezova, “On properties of primitive sets of digraphs with common cycles”, Prikl. Diskr. Mat., 2019, no. 43, 101–114
Citation in format AMSBIB
\Bibitem{Ave19}
\by Y.~E.~Avezova
\paper On properties of primitive sets of digraphs with common cycles
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 43
\pages 101--114
\mathnet{http://mi.mathnet.ru/pdm655}
\crossref{https://doi.org/10.17223/20710410/43/7}
\elib{https://elibrary.ru/item.asp?id=37279960}
Linking options:
  • https://www.mathnet.ru/eng/pdm655
  • https://www.mathnet.ru/eng/pdm/y2019/i1/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024