Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 43, Pages 16–36
DOI: https://doi.org/10.17223/20710410/43/2
(Mi pdm650)
 

This article is cited in 2 scientific papers (total in 2 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

Bernoulli's discrete periodic functions

M. S. Bespalov

Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia
Full-text PDF (690 kB) Citations (2)
References:
Abstract: This paper is a survey of known and some new properties of the discrete periodic Bernoulli functions $b_n(j)$ of order $n$ introduced by V. N. Malozemov and viewed as elements $x=x(0)x(1)\ldots x(N-1)\in\mathbb C_0^N\subset \mathbb C^N$ with the normalization condition $\sum\limits_{k=0}^{N-1} x(k)=0$. It is proved that the operator $\Delta:\mathbb C_0^N\to\mathbb C_0^N$ where $\Delta [x]=y=y(0)y(1)\ldots y(N-1)$, $y(k)=x(k+1)-x(k)$, is a bijection and $\Delta[b_n]=b_{n-1}$. Moreover, according to Malozemov's result, the set of the discrete periodic Bernoulli functions is an infinite cyclic group relative to the cyclic convolution $x*y(s)=\sum\limits_{j=0}^{N-1}x(j)y(s-j)$ with a neutral element $b_0$, and $b_n * b_m=b_{n+m}$. It is proved that either the set of $N-1$ cyclic shifts $x^{k\to}(j)=x(j-k)$ of any discrete periodic Bernoulli function or the set $\{b_m, b_{m+1},\ldots ,b_{m+N-2}\}$ yields a basis of the space $\mathbb C_0^N$. The generating function $\sum\limits_{n=0}^{\infty} b_n t^n$ of a sequence of discrete periodic Bernoulli functions is calculated. Formulas $\sum\limits_{k=1}^{N-1}\sin^{2m}({\pi k}/{N})$, $m\in\mathbb Z$, for calculating the sums of even degrees of sinuses at equidistant nodes of a circle are found by means of these functions and the discrete Fourier transform. It has been established that a cyclic shift by 1 and the multiplication by $ -N$ transform these functions of positive order into special polynomials $P_n(k)$, which were introduced by Bespalov and Korobov and have become popular as the Korobov polynomials of the first kind in the form $K_n(x)=n!P_n(x)$. We have calculated the Korobov numbers $K_n=-n!\cdot N\cdot b_n(1)$ up to $K_{13}$ and the Korobov polynomials up to $K_7(x)$ for any array size (parameter) $N$.
Keywords: discrete Fourier transform, cyclic convolution,finite difference, generating function, Korobov numbers and Korobov polynomials.
Bibliographic databases:
Document Type: Article
UDC: 519.113.3
Language: Russian
Citation: M. S. Bespalov, “Bernoulli's discrete periodic functions”, Prikl. Diskr. Mat., 2019, no. 43, 16–36
Citation in format AMSBIB
\Bibitem{Bes19}
\by M.~S.~Bespalov
\paper Bernoulli's discrete periodic functions
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 43
\pages 16--36
\mathnet{http://mi.mathnet.ru/pdm650}
\crossref{https://doi.org/10.17223/20710410/43/2}
\elib{https://elibrary.ru/item.asp?id=37279952}
Linking options:
  • https://www.mathnet.ru/eng/pdm650
  • https://www.mathnet.ru/eng/pdm/y2019/i1/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024