Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2009, Number 2(4), Pages 127–137 (Mi pdm65)  

This article is cited in 11 scientific papers (total in 12 papers)

Mathematical Foundations of Cryptography

The method for messages automatic encryption

A. D. Zakrevskij

United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, Belarus
References:
Abstract: This paper has been written in 1959. Here, it is published for the first time having in mind the historical accuracy. For encrypting messages, the author suggests to use finite state machines with output functions being bijective for any state.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. D. Zakrevskij, “The method for messages automatic encryption”, Prikl. Diskr. Mat., 2009, no. 2(4), 127–137
Citation in format AMSBIB
\Bibitem{Zak09}
\by A.~D.~Zakrevskij
\paper The method for messages automatic encryption
\jour Prikl. Diskr. Mat.
\yr 2009
\issue 2(4)
\pages 127--137
\mathnet{http://mi.mathnet.ru/pdm65}
Linking options:
  • https://www.mathnet.ru/eng/pdm65
  • https://www.mathnet.ru/eng/pdm/y2009/i2/p127
  • This publication is cited in the following 12 articles:
    1. A. O. Bakharev, R. O. Zapanov, S. E. Zinchenko, I. A. Pankratova, E. S. Prudnikov, “O svoistvakh konechno-avtomatnogo generatora”, PDM, 2024, no. 66, 78–85  mathnet  crossref
    2. G. P. Agibalov, “Problems in theory of cryptanalytical invertibility of finite automata”, PDM, 2020, no. 50, 62–71  mathnet  crossref
    3. G. P. Agibalov, “Cryptanalytic concept of finite automaton invertibility with finite delay”, PDM, 2019, no. 44, 34–42  mathnet  crossref  elib
    4. D. S. Kovalev, V. N. Trenkaev, “Realizatsiya na PLIS shifra Zakrevskogo na osnove perestraivaemogo avtomata, zadannogo formulami”, PDM. Prilozhenie, 2014, no. 7, 142–143  mathnet
    5. D. S. Kovalev, “Realizatsiya na PLIS simmetrichnogo analoga FAPKC”, PDM. Prilozhenie, 2013, no. 6, 36–38  mathnet
    6. J. Math. Sci. (N. Y.), 192:3 (2013), 279–281  mathnet  crossref  mathscinet
    7. N. N. Tokareva, “Ob istorii kriptografii v Rossii”, PDM, 2012, no. 4(18), 82–107  mathnet
    8. A. V. Miloshenko, “Apparatnaya realizatsiya shifrsistemy, osnovannoi na avtomate Zakrevskogo”, PDM, 2010, prilozhenie k № 3, 23–24  mathnet
    9. V. N. Trenkaev, “Realizatsiya shifra Zakrevskogo na osnove perestraivaemogo avtomata”, PDM, 2010, no. 3(9), 69–76  mathnet
    10. I. V. Pankratov, “O potochnykh i avtomatnykh shifrsistemakh s simmetrichnym klyuchom”, PDM, 2009, no. 3(5), 59–68  mathnet
    11. G. P. Agibalov, “50 let kriptografii v Tomskom gosudarstvennom universitete”, PDM, 2009, no. 2(4), 104–126  mathnet
    12. G. P. Agibalov, “Konechnye avtomaty v kriptografii”, PDM, 2009, prilozhenie k № 2, 43–73  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:670
    Full-text PDF :319
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025