Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 42, Pages 48–56
DOI: https://doi.org/10.17223/20710410/42/3
(Mi pdm641)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Methods of Cryptography

Cryptanalysis of $2$-cascade finite automata generator with functional key

I. V. Borovkova, I. A. Pankratova, E. V. Semenova

National Research Tomsk State University, Tomsk, Russia
Full-text PDF (642 kB) Citations (2)
References:
Abstract: A cryptographic generator under consideration is a serial connection $G= A_1\cdot A_2$ of two finite state machines (finite automata) $A_1 = (\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous) and $A_2 = (\mathbb{F}_2,\mathbb{F}_2^n,\mathbb{F}_2, g_2, f_2)$. The key of the generator is the function $f_1$ and possibly the initial states $x(1),y(1)$ of the automata $A_1,A_2$. The cryptanalysis problem for $G$ is the following: given an output sequence $\gamma = z(1)z(2) \ldots z(l)$, find the generator's key. Two algorithms for analysis of $A_2$ are presented, they allow to find a preimage $u(1)\ldots u(l)$ of $\gamma$ in general case and in the case when $A_2$ is the Moore automaton with the transition function $g_2(u, y) = \neg ug^\delta(y) + ug^\tau(y)$ for some $g:\mathbb{F}_2^m\rightarrow\mathbb{F}_2^m$ and $\delta,\tau\in\mathbb{N}$. This preimage is an input to $A_2$ and an output from $A_1$. The values $u(t)$ equal the values $f_1(x(t))$ where $x(t)$ is the state of $A_1$ at a time $t$, $t=1,2, \ldots, l$. If the initial state $x(1)$ and a function class $C_1$ containing $f_1$ are known, then $f_1$ can be determined by its specifying in the class $C_1$.
Keywords: finite automaton, cryptographic generator, $(\delta, \tau)$-step generator, cryptanalysis, DSS method.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00354_а
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: I. V. Borovkova, I. A. Pankratova, E. V. Semenova, “Cryptanalysis of $2$-cascade finite automata generator with functional key”, Prikl. Diskr. Mat., 2018, no. 42, 48–56
Citation in format AMSBIB
\Bibitem{BorPanSem18}
\by I.~V.~Borovkova, I.~A.~Pankratova, E.~V.~Semenova
\paper Cryptanalysis of $2$-cascade finite automata generator with functional key
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 42
\pages 48--56
\mathnet{http://mi.mathnet.ru/pdm641}
\crossref{https://doi.org/10.17223/20710410/42/3}
\elib{https://elibrary.ru/item.asp?id=36668306}
Linking options:
  • https://www.mathnet.ru/eng/pdm641
  • https://www.mathnet.ru/eng/pdm/y2018/i4/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :105
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024