Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 42, Pages 6–17
DOI: https://doi.org/10.17223/20710410/42/1
(Mi pdm639)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

On estimations of distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping

V. O. Mironkin

National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (880 kB) Citations (4)
References:
Abstract: Given $k,n\in\mathbb{N}$, $x_0\in S=\left\{1,\ldots,n\right\}$, and $ f:S\to S$, define $x_{i+1}=f^k(x_i)$ for every $i\in\{0,1,\ldots\}$ and $\tau_{f^k}(x_0)$ as the least integer $i$ such that $f^k(x_i)=x_j$ for some $j$, $j<i$. For the local probability $\mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}$ and for the distribution function $F_{\tau_{f^k}\left(x_0\right)}\left( z \right)$, the following estimates are obtained. If $kz<n$, then
\begin{gather}\notag \mathsf{P}\left\{\tau_{f^k}\left(x_0\right){=}z \right\}>\frac 1n{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}}{{\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{{{m}^{2}}}{2n}}}}\;{+}{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}<z \\ \end{smallmatrix}}}{\frac1{r+k}\text{e}^{-\left( 1+\frac{r}{n} \right)\frac{r^2}{2n}}\left( 1{-}{\left( 1{-}\frac{r+k}{n} \right)}^k \right)},\\ \notag \mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}<\frac1n{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}+{\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}<z \\ \end{smallmatrix}}}{\frac{1}{r}{\text{e}^{-\frac{{{\left( r-1 \right)}^{2}}}{2n}}}\left( 1-{{\left( 1-\frac{r}{n} \right)}^k} \right)}, \end{gather}
where $r=m+\left( z-\dfrac{m}{(m,k)}-1 \right)k$. If $k^2z\leq n$, then
\begin{equation}\notag \begin{gathered} \frac1n\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}{\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{m^2}{2n}}}+\left( 1-\dfrac{k^2z}{2n} \right)\dfrac{k}{n}\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}<z \\ \end{smallmatrix}}{\text{e}^{-\left( 1+\frac{r}{n} \right)\frac{r^2}{2n}}}< \\ <\mathsf{P}\left\{\tau_{f^k}\left(x_0\right)=z \right\}<\frac1n\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}=z \\ \end{smallmatrix}}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}+\dfrac{k}{n}\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}<z \\ \end{smallmatrix}}{\text{e}^{-\frac{{\left( r-1 \right)}^2}{2n}}}, \end{gathered} \end{equation}
which, for a prime $k$, is expressed in elementary functions and efficiently computable for used in practice values of $n$ ($2^{256}$ and more). Also, if $ kz\leq\sqrt{n}$, then
$$\textstyle\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\leq z \\ \end{smallmatrix}}{\dfrac{r}{n}\left( 1-\dfrac{r\left( m+r \right)}{2n} \right){\text{e}^{-\left( 1+\frac{m}{n} \right)\frac{m^2}{2n}}}}<F_{\tau_{f^k}\left(x_0\right)}(z)<\sum\limits_{\begin{smallmatrix} m\geq1, \\ \frac{m}{(m,k)}\leq z \\ \end{smallmatrix}}{\dfrac{r+1}{n}{\text{e}^{-\frac{{\left( m-1 \right)}^2}{2n}}}},$$
where $r=m+\left( z-\dfrac{m}{(m,k)} \right)k$. In some cases, the obtained results allow to estimate the allowable period of usage of the encryption keys generated by iterative algorithms and to build criteria for quality assessment of random sequences.
Keywords: equiprobable random mapping, iteration of random mapping, graph of a mapping, aperiodicity segment, local probability, distribution.
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.719.2
Language: Russian
Citation: V. O. Mironkin, “On estimations of distribution of the length of aperiodicity segment in the graph of $k$-fold iteration of uniform random mapping”, Prikl. Diskr. Mat., 2018, no. 42, 6–17
Citation in format AMSBIB
\Bibitem{Mir18}
\by V.~O.~Mironkin
\paper On estimations of distribution of the length of~aperiodicity segment in the graph of $k$-fold iteration of~uniform random mapping
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 42
\pages 6--17
\mathnet{http://mi.mathnet.ru/pdm639}
\crossref{https://doi.org/10.17223/20710410/42/1}
\elib{https://elibrary.ru/item.asp?id=36668304}
Linking options:
  • https://www.mathnet.ru/eng/pdm639
  • https://www.mathnet.ru/eng/pdm/y2018/i4/p6
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :47
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024