Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 40, Pages 105–113
DOI: https://doi.org/10.17223/20710410/40/9
(Mi pdm625)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Backgrounds of Informatics and Programming

Construction of a Hamming network based on a crossbar with binary memristors

M. S. Tarkov

Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia
Full-text PDF (753 kB) Citations (1)
References:
Abstract: The properties of analog and binary memristors (resistors with memory) are described. The memristors can be used for the hardware implementation of neurons synapses. The memristor matrices are called crossbars. The binary memristors, whose resistance takes only two values (maximum and minimum), are based on the switching filament mechanism and are distributed more widely than analog memristors. They are much more stable to statistical fluctuations compared to analog memristors. The Hamming associative memory's hardware realization based on the use of a binary memristors crossbar and CMOS circuitry is proposed. The maximum binary memristor resistance corresponds to the stored reference vector component value $-1$, and the minimum resistance corresponds to the value $+1$. It is shown that the binary memristors crossbar realizes the Hamming network first layer properties according to which the output first layer neuron signal is non-negative. This signal is maximal for a neuron with the reference vector closest to the input vector. For a given reference vector dimension, the relationship between the maximum and minimum binary memristors resistances is obtained. It guarantees the Hamming network first layer correct operation. Simulation in the LTSPICE system of the proposed Hamming memory scheme confirmed its operability.
Keywords: associative Hamming memory, memristor, crossbar, CMOS-technology, LTSPICE.
Bibliographic databases:
Document Type: Article
UDC: 621.396+621.372
Language: Russian
Citation: M. S. Tarkov, “Construction of a Hamming network based on a crossbar with binary memristors”, Prikl. Diskr. Mat., 2018, no. 40, 105–113
Citation in format AMSBIB
\Bibitem{Tar18}
\by M.~S.~Tarkov
\paper Construction of a~Hamming network based on~a~crossbar with binary memristors
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 40
\pages 105--113
\mathnet{http://mi.mathnet.ru/pdm625}
\crossref{https://doi.org/10.17223/20710410/40/9}
\elib{https://elibrary.ru/item.asp?id=35155728}
Linking options:
  • https://www.mathnet.ru/eng/pdm625
  • https://www.mathnet.ru/eng/pdm/y2018/i2/p105
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :183
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024