Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 39, Pages 5–12
DOI: https://doi.org/10.17223/20710410/39/1
(Mi pdm617)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

On extreme joint probabilities of $k$ events chosen from $n$ events

Yu. A. Zuev

Bauman Moscow State Technical University, Moscow, Russia
Full-text PDF (627 kB) Citations (4)
References:
Abstract: An arbitrary probability space with $n$ events is considered. All events have the same probability $p$. No restrictions on correlations between the events are imposed and the events are considered simply as arbitrary subsets of measure $p$ in the probability space. From the set of $n$ events, all $C_n^k$ subsets $X$ consisting of $k$ events are chosen, and for each such subset $X$ the probability $\mathsf P(X)$ of joint implementation of its $k$ events is considered. The subset with the minimum probability $\min_{X\colon|X|=k}\mathsf P(X)$ and the subset with the maximum probability $\max_{X\colon|X|=k}\mathsf P(X)$ are selected. In the paper, exact boundaries for both probabilities are obtained. For minimum probability:
\begin{gather*} \text{if}\ kp\le k-1,\quad\text{then}\quad 0\le\min_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ kp>k-1,\quad\text{then}\quad kp-k+1\le\min_{X\colon|X|=k}\mathsf P(X)\le p. \end{gather*}
For maximum probability:
\begin{gather*} \text{if}\ np<k-1,\quad\text{then}\quad 0\le\max_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ k-1\le np<k,\quad\text{then}\quad\frac{np-\lfloor np\rfloor}{C_n^k}\le\max_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ k\le np,\quad\text{then}\quad\frac{(\lfloor np\rfloor+1-np)C_{\lfloor np\rfloor}^k +(np-\lfloor np\rfloor) C_{\lfloor np\rfloor+1}^k}{C_n^k}\le\max_{X\colon|X|=k}\mathsf P(X)\le p. \end{gather*}
Keywords: event, probability, linear programming, optimum base.
Bibliographic databases:
Document Type: Article
UDC: 519.157
Language: Russian
Citation: Yu. A. Zuev, “On extreme joint probabilities of $k$ events chosen from $n$ events”, Prikl. Diskr. Mat., 2018, no. 39, 5–12
Citation in format AMSBIB
\Bibitem{Zue18}
\by Yu.~A.~Zuev
\paper On extreme joint probabilities of~$k$ events chosen from~$n$ events
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 39
\pages 5--12
\mathnet{http://mi.mathnet.ru/pdm617}
\crossref{https://doi.org/10.17223/20710410/39/1}
\elib{https://elibrary.ru/item.asp?id=32724371}
Linking options:
  • https://www.mathnet.ru/eng/pdm617
  • https://www.mathnet.ru/eng/pdm/y2018/i1/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :113
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024