Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 39, Pages 78–93
DOI: https://doi.org/10.17223/20710410/39/7
(Mi pdm613)
 

Applied Automata Theory

On the local invertibility of finite state information lossless automata

O. A. Logachev

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: A Mealy finite automaton $\mathcal M=(A,Q,A,\varphi,\psi)$ with input and output alphabets $A$, state set $Q$, and transition and output functions $\varphi\colon Q\times A\to Q$ and $\psi\colon Q\times A\to A$ respectively is said to be an information lossless automaton (ILA) if a map $\psi_q\colon A\to A$ defined as $\psi_q(a)=\psi(q,a)$ is a permutation on $A$ for any $q$ in $Q$. The ILA $\mathcal M$ is called locally invertible if there exist $u\in A^n$ and $n\in\mathbb N$ such that, for any $x^1=x_1^1x_2^1\dots$, $x^2=x_1^2x_2^2\dots\in A^\infty$, $q^1,q^2\in Q$, $w\in A^m$, $m\in\mathbb N$, and $y\in A^\infty$, the equality $\psi(q^1,x^1)=\psi(q^2,x^2)=wuy$ implies $(x^1_{m+n+1},x^1_{m+n+2},\dots)=x^2_{m+n+1},x^2_{m+n+2},\dots)$. For ILA $\mathcal M$, we define an automaton without outputs $\mathcal B(\mathcal M)=(A,Q,\delta)$ where $\delta(q,b)=\varphi(q,\psi_q^{-1}(b))$, $q\in Q$, and $b\in A$. The automaton $\mathcal B(\mathcal M)$ is called synchronizable if there exist $v\in A^l$, $l\in\mathbb N$, and $q_0\in Q$ such that $\delta(q,v)=q_0$ for any $q\in Q$. Our main results are the following: 1) we have proved that ILA $\mathcal M$ is locally invertible iff the automation $\mathcal B(\mathcal M)$ is synchronizable, 2) we have constructed some new classes of locally invertible binary shift registers with output functions being some monotonic Boolean functions, namely the nondecreasing (nonincreasing) functions for which the weights of all the minimal (respectively maximal) elements in support are less or more than the half of the number of variables.
Keywords: finite state automaton, information lossless automaton, local invertibility, shift register.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226А
16-01-00470А
Bibliographic databases:
Document Type: Article
UDC: 519.716.35
Language: Russian
Citation: O. A. Logachev, “On the local invertibility of finite state information lossless automata”, Prikl. Diskr. Mat., 2018, no. 39, 78–93
Citation in format AMSBIB
\Bibitem{Log18}
\by O.~A.~Logachev
\paper On the local invertibility of finite state information lossless automata
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 39
\pages 78--93
\mathnet{http://mi.mathnet.ru/pdm613}
\crossref{https://doi.org/10.17223/20710410/39/7}
\elib{https://elibrary.ru/item.asp?id=32724377}
Linking options:
  • https://www.mathnet.ru/eng/pdm613
  • https://www.mathnet.ru/eng/pdm/y2018/i1/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :131
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024