Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 39, Pages 107–115
DOI: https://doi.org/10.17223/20710410/39/10
(Mi pdm608)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational Methods in Discrete Mathematics

Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions

A. V. Burdelev

Belarus State University, Minsk, Belarus
Full-text PDF (781 kB) Citations (1)
References:
Abstract: A $k$-valued threshold function is defined as $f(x_1,\dots,x_n)=i\in\{0,1,\dots,k-1\}\Leftrightarrow b_i\le L(x_1,\dots,x_n)<b_{i+1}$ where $L(x_1,\dots,x_n)=a_1x_1+a_2x_2+\dots+a_nx_n$ is a linear form in variables $x_1,\dots,x_n$ with the values in $\{0,1,\dots,k-1\}$ and coefficients $a_1,\dots,a_n$ in $\mathbb R$ and $b_0,\dots,b_k$ are some thresholds for $L$ in $\mathbb R$, $b_0<b_1<\dots<b_k$. A. V. Burdelev and V. G. Nikonov have created and published in J. Computational Nanotechnology (2017, no. 1, pp. 7–14) an iterative algorithm for computing coefficients $a_1,\dots,a_n$ and thresholds $b_0,\dots,b_k$ for any $k$-valued threshold function $f(x_1,\dots,x_n)$ given by its values $f(c_1,\dots,c_n)$ for all $(c_1\dots c_n)$ in $\{0,\dots,k-1\}^n$. In computer experiment they showed the convergence of this algorithm on many different examples. Here, we present a theoretical proof of this algorithm convergence on each $k$-valued threshold function for a finite number of steps (iterations). The proof is very much similar to the geometrical proof of perceptron convergence theorem by M. Minsky and S. Papert.
Keywords: threshold functions, iterative algorithms, convergence.
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. V. Burdelev, “Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions”, Prikl. Diskr. Mat., 2018, no. 39, 107–115
Citation in format AMSBIB
\Bibitem{Bur18}
\by A.~V.~Burdelev
\paper Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 39
\pages 107--115
\mathnet{http://mi.mathnet.ru/pdm608}
\crossref{https://doi.org/10.17223/20710410/39/10}
\elib{https://elibrary.ru/item.asp?id=32724380}
Linking options:
  • https://www.mathnet.ru/eng/pdm608
  • https://www.mathnet.ru/eng/pdm/y2018/i1/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :59
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024