Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 38, Pages 35–48
DOI: https://doi.org/10.17223/20710410/38/2
(Mi pdm606)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Backgrounds of Applied Discrete Mathematics

On almost nilpotent varieties of anticommutative metabelian algebras

O. V. Shulezhkoa, N. P. Panovb

a Ilya Ulyanov State Pedagogical University, Ulyanovsk, Russia
b Ulyanovsk State University, Ulyanovsk, Russia
Full-text PDF (660 kB) Citations (1)
References:
Abstract: Let $\Phi$ be a field of characteristic zero. We consider variety of anticommutative metabelian algebras, denoted $\mathbf{MA}$, in which the anticommutativity identity $x_1x_2\equiv-x_2x_1$ and the metabelian identity $(x_1x_2)(x_3x_4)\equiv0$ are satisfied. The associativity of multiplication is not assumed. Numerical invariants of the variety of all anticommutative metabelian algebras are obtained: the sequence of codimensions is $c_n(\mathbf{MA})={n!}/2$. An algorithm for computing the multiplicities of $m_\lambda(\mathbf{MA})$ for $n>2$ is presented. We define a series of anticommutative metabelian algebras $C_m$ for any integer $m\ge2$ and prove the existence of almost nilpotent variety with PI-exponent of $m$. Moreover, two almost nilpotent varieties of subexponential growth are studied. The first variety is the well-known variety of all metabelian Lie algebras, denoted $\mathbf A^2 $, the second – the almost nilpotent variety $\mathbf V_\mathrm{anti}$ generated by the anticommutative metabelian algebra $G$, $\mathbf V_\mathrm{anti}=\operatorname{var}(G)$, which is defined in our investigation. In case of varieties of anticommutative metabelian algebras, it is shown that there are only two almost nilpotent varieties of subexponential growth: $\mathbf A^2$ and $\mathbf V_\mathrm{anti}$. The proofs are based on the theory of irreducible modules, Young diagram and tableau, and some basic notions of the representation theory for the symmetric group. All results are obtained by means of combinatorial methods.
Keywords: polynomial identity, variety, almost nilpotent, codimension growth.
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: O. V. Shulezhko, N. P. Panov, “On almost nilpotent varieties of anticommutative metabelian algebras”, Prikl. Diskr. Mat., 2017, no. 38, 35–48
Citation in format AMSBIB
\Bibitem{ShuPan17}
\by O.~V.~Shulezhko, N.~P.~Panov
\paper On almost nilpotent varieties of anticommutative metabelian algebras
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 38
\pages 35--48
\mathnet{http://mi.mathnet.ru/pdm606}
\crossref{https://doi.org/10.17223/20710410/38/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm606
  • https://www.mathnet.ru/eng/pdm/y2017/i4/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :67
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024