Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 38, Pages 66–88
DOI: https://doi.org/10.17223/20710410/38/5
(Mi pdm602)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Backgrounds of Computer and Control System Reliability

Single fault detection tests for logic networks of AND, NOT gates

K. A. Popkov

Keldysh Institute of Applied Mathematics, Moscow, Russia
Full-text PDF (850 kB) Citations (4)
References:
Abstract: Let $D_1(f)$ ($D_0(f)$) be the least length of a fault detection test for irredundant logic networks consisting of logic gates in the basis $\{\&,\neg\}$, implementing a given Boolean function $f(x_1,\ldots,x_n)$, and having at most one stuck-at-1 (stuck-at-0 respectively) fault on outputs of the logic gates. Let $f_1=x_i$; $f_2=0, \overline{x_i}$, or $x_{i_1}^{\sigma_1}\& x_{i_2}\dots\& x_{i_k}$; $f_3=\overline{x_{i_1}}\&\overline{x_{i_2}}\& x_{i_3}\&\dots\& x_{i_k}$ or $\underbrace{(\dots((}_{k-1}x_{i_1}^{\sigma_1}\& x_{i_2})^{\sigma_2}\& x_{i_3})^{\sigma_3}\&\dots\& x_{i_k})^{\sigma_k}$; $f_4=x_{i_1}^{\sigma_1}\&\dots\& x_{i_k}^{\sigma_k}$; $f_5=\underbrace{(\dots((}_{k-1}x_{i_1}^{\sigma_1}\& x_{i_2}^{\sigma_2})^{\delta_1}\& x_{i_3}^{\sigma_3})^{\delta_2}\&\dots\& x_{i_k}^{\sigma_k})^{\delta_{k-1}}$, where $2\leqslant k\leqslant n$ for $f_2$, $f_3$, and $f_5$; $1\leqslant k\leqslant n$ for $f_4$; $\sigma_1,\dots,\sigma_k,\delta_1,\dots,\delta_{k-1}\in\{0,1\}$; $i,i_1,\dots,i_k\in\{1,\dots,n\}$; indices $i_1,\dots,i_k$ are pairwise different; for $f_3$, at least one of numbers $\sigma_2,\dots,\sigma_k$ equals $0$ and if $k=2$, then assume $x_{i_3}\&\dots\&x_{i_k}\equiv1$; for $f_5$, at least one of numbers $\delta_1,\dots,\delta_{k-1}$ equals $0$. It is proved that, for each Boolean function $f(x_1,\dots,x_n)\not\equiv1$,
$$ D_1(f)=\begin{cases} 0,&\text{iff the function $f$ is representable in the form of $f_1$,}\\ 1,&\text{iff the function $f$ is representable in the form of $f_2$,}\\ 2,&\text{iff the function $f$ is representable in the form of $f_3$,}\\ 3&\text{otherwise.} \end{cases} $$
If $f\equiv1$ then the value $D_1(f)$ is undefined. Also, it is proved that, for each Boolean function $f(x_1,\dots,x_n)$ which is different from constants,
$$ D_0(f)=\begin{cases} 0,&\text{iff the function $f$ is representable in the form of $f_1$,}\\ 1,&\text{iff the function $f$ is representable in the form of $f_4$ but not of $f_1$,}\\ 2,&\text{iff the function $f$ is representable in the form of $f_5$,}\\ 3&\text{otherwise}. \end{cases} $$
If $f\equiv1$ or $f\equiv0$ then the value $D_0(f)$ is undefined.
Keywords: logic network, stuck-at fault, single fault detection test.
Funding agency Grant number
Russian Science Foundation 14-21-00025 П
Bibliographic databases:
Document Type: Article
UDC: 519.718.7
Language: Russian
Citation: K. A. Popkov, “Single fault detection tests for logic networks of AND, NOT gates”, Prikl. Diskr. Mat., 2017, no. 38, 66–88
Citation in format AMSBIB
\Bibitem{Pop17}
\by K.~A.~Popkov
\paper Single fault detection tests for logic networks of AND, NOT gates
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 38
\pages 66--88
\mathnet{http://mi.mathnet.ru/pdm602}
\crossref{https://doi.org/10.17223/20710410/38/5}
Linking options:
  • https://www.mathnet.ru/eng/pdm602
  • https://www.mathnet.ru/eng/pdm/y2017/i4/p66
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :95
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024