Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 38, Pages 89–94
DOI: https://doi.org/10.17223/20710410/38/6
(Mi pdm601)
 

Applied Graph Theory

On minimal vertex $1$-extensions of path orientation

M. B. Abrosimova, O. V. Modenovab

a Saratov State University, Saratov, Russia
b SEC "Erudit"', Saratov, Russia
References:
Abstract: In 1976, J. Hayes proposed a graph theoretic model for the study of system fault tolerance by considering faults of nodes. In 1993, the model was expanded to the case of failures of links between nodes. A graph $G^*$ is a $k$-vertex extension of a graph $G$ if every graph obtained by removing $k$ vertex from $G^*$ contains $G$. A $k$-vertex extension $G^*$ of graph $G$ is said to be minimal if it contains $n+k$ vertices, where $n$ is the number of vertices in $G$, and $G^*$ has the minimum number of edges among all $k$-vertex extensions of graph $G$ with $n+k$ vertices. In the paper, the upper and lower bounds for the number of additional arcs $ec(\overrightarrow P_n)$ of a minimal vertex $1$-extension of an oriented path $\overrightarrow P_n$ are obtained. For the oriented path $\overrightarrow P_n$ with ends of different types which is not isomorphic to Hamiltonian path, we have $\lceil({n+1})/6\rceil+2\leq ec(P_n)\leq n+3$. For the oriented path $\overrightarrow P_n$ with ends of equal types, we have $\lceil({n+1})/4\rceil+2\leq ec(P_n)\leq n+3$.
Keywords: minimal vertex extension, node fault tolerance, path orientation.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. B. Abrosimov, O. V. Modenova, “On minimal vertex $1$-extensions of path orientation”, Prikl. Diskr. Mat., 2017, no. 38, 89–94
Citation in format AMSBIB
\Bibitem{AbrMod17}
\by M.~B.~Abrosimov, O.~V.~Modenova
\paper On minimal vertex $1$-extensions of path orientation
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 38
\pages 89--94
\mathnet{http://mi.mathnet.ru/pdm601}
\crossref{https://doi.org/10.17223/20710410/38/6}
Linking options:
  • https://www.mathnet.ru/eng/pdm601
  • https://www.mathnet.ru/eng/pdm/y2017/i4/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024