Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 37, Pages 20–31
DOI: https://doi.org/10.17223/20710410/37/2
(Mi pdm593)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

Hyperelliptic curves, Cartier–Manin matrices and Legendre polynomials

S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Full-text PDF (668 kB) Citations (4)
References:
Abstract: Using hyperelliptic curves in cryptography requires the computation of the Jacobian order of a curve. This is equivalent to computing the characteristic polynomial of Frobenius $\chi(\lambda)\in\mathbb Z[\lambda]$. By calculating Cartier–Manin matrix, we can recover the polynomial $\chi(\lambda)$ modulo the characteristic of the base field. This information can further be used for recovering full polynomial in combination with other methods. In this paper, we investigate the hyperelliptic curves of the form $C_1\colon y^2=x^{2g+1}+ax^{g+1}+bx$ and $C_2\colon y^2=x^{2g+2}+ax^{g+1}+b$ over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. We transform these curves to the form $C_{1,\rho}\colon y^2=x^{2g+1}-2\rho x^{g+1}+x$ and $C_{2,\rho}\colon y^2=x^{2g+2}-2\rho x^{g+1}+1$, where $\rho=-a/(2\sqrt b)$, and prove that the coefficients of the corresponding Cartier–Manin matrices for the curves in this form are Legendre polynomials. As a consequence, the matrices are centrosymmetric and therefore, for finding the matrix, it's enough to compute a half of coefficients. Cartier–Manin matrices are determined up to a transformation of the form $S^{(p)}WS^{-1}$. It is known that centrosymmetric matrices can be transformed to the block-diagonal form by an orthogonal transformation. We prove that this transformation can be modified to have a form $S^{(p)}WS^{-1}$ and be defined over the base field of the curve. Therefore, Cartier–Manin matrices of curves $C_{1,\rho}$ and $C_{2,\rho}$ are equivalent to block-diagonal matrices. In the case of $\mathrm{gcd}(p,g)=1$, Miller and Lubin proved that the matrices of curves $C_1$ and $C_2$ are monomial. We prove that the polynomial $\chi(\lambda)\pmod p$ can be found in factored form in terms of Legendre polynomials by using permutation attached to the monomial matrix. As an application of our results, we list all possible polynomials $\chi(\lambda)\pmod p$ in the case of $\mathrm{gcd}(p,g)=1$, $g$ is from $2$ to $7$ and the curve $C_1$ is over $\mathbb F_p$ if $\sqrt b\in\mathbb F_p$ and over $\mathbb F_{p^2}$ if $\sqrt b\not\in\mathbb F_p$.
Keywords: hyperelliptic curve cryptography, Cartier–Manin matrix, Legendre polynomials.
Bibliographic databases:
Document Type: Article
UDC: 512.772.7
Language: English
Citation: S. A. Novoselov, “Hyperelliptic curves, Cartier–Manin matrices and Legendre polynomials”, Prikl. Diskr. Mat., 2017, no. 37, 20–31
Citation in format AMSBIB
\Bibitem{Nov17}
\by S.~A.~Novoselov
\paper Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 37
\pages 20--31
\mathnet{http://mi.mathnet.ru/pdm593}
\crossref{https://doi.org/10.17223/20710410/37/2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422796800002}
Linking options:
  • https://www.mathnet.ru/eng/pdm593
  • https://www.mathnet.ru/eng/pdm/y2017/i3/p20
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :71
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024