Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 37, Pages 32–51
DOI: https://doi.org/10.17223/20710410/37/3
(Mi pdm591)
 

Mathematical Methods of Cryptography

On primitivity of mixing digraphs associated with $2$-feedbacks shift registers

A. M. Koreneva

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
References:
Abstract: Analysis of mixing properties of round transformations is an important issue in the theory of symmetric iterative block ciphers. For researching this subject, a matrix-digraph approach is widely used in cryptography. This approach allows to characterize the required properties in terms of primitivity and exponent of a matrix (or a digraph) related to the transformations concerned. This paper is devoted to such a characterization of mixing properties of transformations fulfilled by $2$-feedback shift registers. For naturals $n,m$, and $r$, let $n>1$, $r>1$, $0\leq m\leq n-2$, $V_r=(\mathrm{GF}(2))^r$; $f_m\colon V_r^n\to V_r$ and $f_{n-1}\colon V_r^n\to V_r$ are some feedback functions; $\mu\colon V_r\to V_r$ and $g\colon V_r\to V_r$ are some permutations over $V_r$ used to modify feedbacks $f_m$ and $f_{n-1}$ respectively; $x_{\delta_0},x_{\delta_1},\dots,x_{\delta_p}$ are all essential variables of the function $f_m(x_0,x_1,\dots,x_{n-1})$, $\delta_0=m+1$, $0<\delta_1<\dots<\delta_p<n$, $p>0$; $x_{d_0},x_{d_1},\dots,x_{d_q}$ are all essential variables of the function $f_{n-1}(x_0,x_1,\dots,x_{n-1})$, $d_0=0$, $d_1<\dots<d_q<n$, $q>0$; $\varphi^{g,\mu}\colon V_r^n\to V_r^n$, $\varphi^{g,\mu}(x_0,x_1,\dots,x_{n-1})=(x_1,\dots,x_{m-1},\mu(f_m(x_0,\dots,x_{n-1})),x_{m+1},\dots,x_{n-2},g(f_{n-1}(x_0,\dots,x_{n-1})))$. In fact, $\varphi^{g,\mu}$ is the transition function of a shift register of the length $n$ over $V_r$ with two feedback functions $\mu(f_m(x))$ and $g(f_{n-1}(x))$, $x=x_0x_1\dots x_{n-1}$. Let $M(\varphi^{g,\mu})=M$ be a Boolean matrix $(m_{ij})$ (called the mixing matrix of the map $\varphi^{g,\mu})$, where $m_{ij}=1$ iff the $j$-th coordinate function of the map $\varphi^{g,\mu}$ essentially depends on the variable $x_i$ $(i,j\in\{0,1,\dots,n-1\})$. The matrix $M$ is said to be primitive if there is a power $M^e=\left(m_{ij}^{(e)}\right)$ of its mixing matrix $M$ such that $m_{ij}^{(e)}>0$ for all $i$ and $j$; in this case, the least power $e$ is called an exponent of $M$ and is denoted by $\exp M$. The conceptions of the primitiveness and exponent of the matrix $M(\varphi^{g,\mu})$ expend to the digraph $\Gamma(\varphi^{g,\mu})$ with the adjacency matrix $M$ – the mixing graph associated with $\varphi^{g,\mu}$. The main results of the paper are the following: 1) it is proved that the strongly connected digraph $\Gamma(\varphi^{g,\mu})$ is primitive iff $\delta_1>m$ and the numbers in the set $L'=\{n-d_i,\ n+m+1-d_j-\delta_k\colon i=0,\dots,q,\ j=0,\dots,t,\ k=1,\dots,p\}$ are relatively prime or $\delta_1\leq m$ and the numbers in the set $L=\{n-d_i,\ n+m+1-d_j-\delta_k,\ m+1-\delta_l\colon i=0,\dots,q,\ j=0,\dots,t,\ k=\tau+1,\dots,p,\ l=1,\dots,\tau\}$ are relatively prime, where $t$ and $\tau$ are determined by the conditions: $d_t$ and $\delta_\tau$ are the largest numbers in $D=\{d_0,\dots,d_q\}$ and $\Delta=\{\delta_0,\dots,\delta_p\}$ with the properties $d_t\leq m$ and $\delta_\tau\leq m$ respectively; 2) for $\exp\Gamma(\varphi^{g,\mu})$, some attainable upper bounds depending on $m$ and other parameters in $D$ and $\Delta$ are obtained, improving all the known exponent estimates for the same digraphs. Particularly, if $(n-1)\in D$ and $m\in\Delta$, then $\exp\Gamma(\varphi^{g,\mu})\le\min\{\rho(D)+\varepsilon,\rho(\Delta)+\varepsilon'\}$, where $\rho(D)=\max\{n-d_q,d_q-d_{q-1},\dots,d_1-d_0\}$, $\rho(\Delta)=\max\{\delta_1+n-\delta_p,\delta_p-\delta_{p-1},\dots,\delta_0-\delta_r,\dots,\delta_2-\delta_1\}$, $\varepsilon=\max\{2n-m-2-d_q,n+m-\max\{\delta_0,\delta_p\}\}$, and $\varepsilon'=\max\{2m+1-\delta_\tau,n-1-d_t\}$. These results can be successfully used in construction of iterative cryptographic algorithms based on $\varphi^{g,\mu}$ with the rapid input data mixing.
Keywords: primitive digraph, exponent, mixing digraph, multi-feedback shift register, modified additive generator.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. M. Koreneva, “On primitivity of mixing digraphs associated with $2$-feedbacks shift registers”, Prikl. Diskr. Mat., 2017, no. 37, 32–51
Citation in format AMSBIB
\Bibitem{Kor17}
\by A.~M.~Koreneva
\paper On primitivity of mixing digraphs associated with $2$-feedbacks shift registers
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 37
\pages 32--51
\mathnet{http://mi.mathnet.ru/pdm591}
\crossref{https://doi.org/10.17223/20710410/37/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm591
  • https://www.mathnet.ru/eng/pdm/y2017/i3/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :53
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024