Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 37, Pages 5–19
DOI: https://doi.org/10.17223/20710410/37/1
(Mi pdm588)
 

Theoretical Backgrounds of Applied Discrete Mathematics

On the two definitions of degree of a function over an associative, commutative ring

M. I. Anokhin

Information Security Institute of Lomonosov University, Moscow, Russia
References:
Abstract: Let $R$ be an associative, commutative ring and let $\varphi\colon R^m\to R$, where $m\ge0$. Denote by $\deg_\Pi\varphi$ the smallest integer $n\ge-1$ such that $\varphi$ can be represented by an $m$-variate polynomial of degree $n$ over $R$. (By convention, the degree of the zero polynomial is $-1$.) Also, let $\deg_\mathrm{RM}\varphi$ denote the smallest integer $n\ge-1$ such that $\partial_{v_1}\dots\partial_{v_{n+1}}\varphi=0$ for all $v_1,\dots,v_{n+1}\in R^m$. Here $(\partial_v\psi)(x)=\psi(x+v)-\psi(x)$ for any $v,x\in R^m$ and any function $\psi\colon R^m\to R$. If no such integer $n$ exists, then we put $\deg_\Pi\varphi=\infty$ or $\deg_\mathrm{RM}\varphi=\infty$, respectively. In this paper, we study the problem of characterizing the class $\mathfrak D$ of all associative, commutative rings $R$ such that these degrees coincide for functions over $R$, i.e., $\deg_\Pi\varphi=\deg_\mathrm{RM}\varphi$ for all $m\ge0$ and all functions $\varphi\colon R^m\to R$. We solve this problem when the additive group $\mathcal R$ of the ring $R$ belongs to some large classes of abelian groups. Namely, our main results are as follows: 1) if $\mathcal R$ is torsion or finitely generated, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ for some square-free integer $d\ge1$; 2) if $\mathcal R$ is not reduced, then $R\in\mathfrak D$ if and only if $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 3) if $\mathcal R$ is a direct sum of rank $1$ subgroups, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ or $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 4) if $\mathcal R$ is reduced and cotorsion, then $R\in\mathfrak D$ if and only if $R\cong\prod_{p\in P}(\mathbb Z/p\mathbb Z)$ for some set $P$ of prime numbers. The proof of these results is based on the fact that any ring in $\mathfrak D$ is an $E$-ring.
Keywords: associative ring, commutative ring, Abelian group, additive group of a ring, polynomial, degree of a function, $E$-ring, Newton's formula.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Bibliographic databases:
Document Type: Article
UDC: 512.541+512.552+512.711
Language: Russian
Citation: M. I. Anokhin, “On the two definitions of degree of a function over an associative, commutative ring”, Prikl. Diskr. Mat., 2017, no. 37, 5–19
Citation in format AMSBIB
\Bibitem{Ano17}
\by M.~I.~Anokhin
\paper On the two definitions of degree of a~function over an associative, commutative ring
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 37
\pages 5--19
\mathnet{http://mi.mathnet.ru/pdm588}
\crossref{https://doi.org/10.17223/20710410/37/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm588
  • https://www.mathnet.ru/eng/pdm/y2017/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :80
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024