Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 36, Pages 73–83
DOI: https://doi.org/10.17223/20710410/36/6
(Mi pdm583)
 

Mathematical Methods of Cryptography

Compactly supported functions in cryptography algorithms

A. V. Shchurenko, V. L. Leontiev

Ulyanovsk State University, Ulyanovsk, Russia
References:
Abstract: In the paper, we propose a new symmetric block cipher based on the orthogonal finite functions (OFF) in the Sobolev's space. To encrypt a plaintext $a=a_1a_2\dots a_n$, we first convert $a$ to a polynomial $a(x)=a_1+a_2x+\dots+a_nx^{n-1}$, then approximate $a(x)$ by a linear combination $F(x)=\sum_{i=1}^nr_if_i(x)$, where $f=(f_1,f_2,\dots,f_n)$ is an OFF-basis not having the orthogonality property, and finally compute the ciphertext $b=b_1b_2\dots b_n$, where $b_i=F(k_i)$ for some values $k_i$ of $x$, $i=1,2,\dots,n$. The numbers $k_1,\dots,k_n$ and some parameters of functions in $f$ form the key of the cipher. To decrypt the ciphertext $b$, we first, given $b_1,\dots,b_n$ and key parameters in $f$, compute the approximation coefficients $r_1,\dots,r_n$, next, given $k_1,\dots,k_n$, compute $x'_1,\dots,x'_n$ such that $a(x'_i)=r_i$ for $i=1,2,\dots,n$, then construct $a(x)$ by the Lagrange method, and finally convert $a(x)$ to $a$.
Keywords: OFF, finite functions, cryptography, encryption.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Shchurenko, V. L. Leontiev, “Compactly supported functions in cryptography algorithms”, Prikl. Diskr. Mat., 2017, no. 36, 73–83
Citation in format AMSBIB
\Bibitem{ShcLeo17}
\by A.~V.~Shchurenko, V.~L.~Leontiev
\paper Compactly supported functions in cryptography algorithms
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 36
\pages 73--83
\mathnet{http://mi.mathnet.ru/pdm583}
\crossref{https://doi.org/10.17223/20710410/36/6}
Linking options:
  • https://www.mathnet.ru/eng/pdm583
  • https://www.mathnet.ru/eng/pdm/y2017/i2/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :120
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024