|
Mathematical Methods of Cryptography
Compactly supported functions in cryptography algorithms
A. V. Shchurenko, V. L. Leontiev Ulyanovsk State University, Ulyanovsk, Russia
Abstract:
In the paper, we propose a new symmetric block cipher based on the orthogonal finite functions (OFF) in the Sobolev's space. To encrypt a plaintext $a=a_1a_2\dots a_n$, we first convert $a$ to a polynomial $a(x)=a_1+a_2x+\dots+a_nx^{n-1}$, then approximate $a(x)$ by a linear combination $F(x)=\sum_{i=1}^nr_if_i(x)$, where $f=(f_1,f_2,\dots,f_n)$ is an OFF-basis not having the orthogonality property, and finally compute the ciphertext $b=b_1b_2\dots b_n$, where $b_i=F(k_i)$ for some values $k_i$ of $x$, $i=1,2,\dots,n$. The numbers $k_1,\dots,k_n$ and some parameters of functions in $f$ form the key of the cipher. To decrypt the ciphertext $b$, we first, given $b_1,\dots,b_n$ and key parameters in $f$, compute the approximation coefficients $r_1,\dots,r_n$, next, given $k_1,\dots,k_n$, compute $x'_1,\dots,x'_n$ such that $a(x'_i)=r_i$ for $i=1,2,\dots,n$, then construct $a(x)$ by the Lagrange method, and finally convert $a(x)$ to $a$.
Keywords:
OFF, finite functions, cryptography, encryption.
Citation:
A. V. Shchurenko, V. L. Leontiev, “Compactly supported functions in cryptography algorithms”, Prikl. Diskr. Mat., 2017, no. 36, 73–83
Linking options:
https://www.mathnet.ru/eng/pdm583 https://www.mathnet.ru/eng/pdm/y2017/i2/p73
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 120 | References: | 47 |
|