Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 36, Pages 25–50
DOI: https://doi.org/10.17223/20710410/36/3
(Mi pdm580)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences

M. M. Glukhova, O. V. Kamlovskiib

a Moscow Technological University (MIREA), Moscow, Russia
b Certification Research Center, Moscow, Russia
References:
Abstract: Using Gauss sums, we solve the problem of obtaining the formulas for the exact values $N(z,u)$ of appearances of $z$ among the elements $u(0),u(1),\dots,u(T-1)$ of a linear recurrence sequence (LRS) $u$ generated by an irreducible polynomial of a degree $m$ over a field $P=\operatorname{GF}(q)$ in the case, when the period of $u$ is equal to $T=(q^m-1)/d$, where $d|(p^j+1)$ for some natural number $j$ and $p=\operatorname{char}P$, that is, $p$ is a semiprimitive number modulo $d$. Such a sequence $u$ is obtained from a LRS of the maximal period $q^m-1$ by regular sampling with step $d$.
The results of the article generalize the formulas for $N(z,u)$ which are well-known in the case of prime $q$ or $z=0$. In fact, we give some formulas for $N(z,u)$ in the following cases: 1) $d=2$; 2) $d>2$ and $z=0$; 3) $d>2$, $z\neq0$, and $d=d_1$ or $d_1=1$, where $d_1=((q^m-1)/(q-1), d)$; 4) $d>2$, $z\neq0$, $d_1=2$, and $d/2$ is odd or $(p^{l_1}+1)/(d/2)$ is even, where $l_1$ is the least positive integer such that $(d/2)\mid(p^{l_1}+1)$. Thus, as a corollary, we have a complete solution of the problem in the situation when $d$ is a prime number.
Keywords: linear recurrent sequences, Gauss sum.
Bibliographic databases:
Document Type: Article
UDC: 621.391:519.7+621.391.1:004.7
Language: Russian
Citation: M. M. Glukhov, O. V. Kamlovskii, “Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences”, Prikl. Diskr. Mat., 2017, no. 36, 25–50
Citation in format AMSBIB
\Bibitem{GluKam17}
\by M.~M.~Glukhov, O.~V.~Kamlovskii
\paper Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 36
\pages 25--50
\mathnet{http://mi.mathnet.ru/pdm580}
\crossref{https://doi.org/10.17223/20710410/36/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm580
  • https://www.mathnet.ru/eng/pdm/y2017/i2/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :166
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024