Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 35, Pages 14–28
DOI: https://doi.org/10.17223/20710410/35/2
(Mi pdm575)
 

Theoretical Foundations of Applied Discrete Mathematics

Estimator for the distribution of the numbers of runs in a random sequence controlled by stationary Markov chain

N. M. Mezhennaya

Bauman Moscow State Technical University
References:
Abstract: The sequences of random characters from a finite set $\mathcal A$ with polynomial distributions controlled by a stationary finite-state Markov chain are considered. For numbers of character runs in them, the asymptotic properties of joint distributions are studied. We deduce an estimate for the total variation distance $\rho_{TV}$ between the distribution of a random vector $\varsigma_\mathcal A$ with components being numbers of runs in a controlled sequence of an enough length $T$ and accompanying multidimensional Poisson distribution $\mathrm{Pois}(\lambda_\mathcal A)$. The estimate is $\rho_{TV}\left(\mathcal L(\varsigma_\mathcal A),\mathrm{Pois}(\lambda_\mathcal A)\right)\leq\gamma\left(\gamma T(p^*)^{s_*}+1\right)$, where $\gamma^2=|\mathcal A|^2(2s^*+3)(p^*)^{s_*}$, $s_*$ ($s^*$) is the minimum (maximum) length of run in the set of components of the vector $\varsigma_\mathcal A$, and $p^*$ is the maximum character probability in distributions given on $\mathcal A$. For deriving this estimate, we use the functional variant of Chen–Stein method and an estimation for the total variation distance between the mixed and ordinal Poisson distributions. This estimation is a function of the variance of mixing parameter of mixed Poisson distribution. Using the derived estimate for the total variation distance $\rho_{TV}$, we deduce the multidimensional Poisson and normal limit theorems for the random vector $\varsigma_\mathcal A$ under appropriate conditions for scheme parameters.
Keywords: number of runs, Markov chain, total variation distance, Chen–Stein method, mixed Poisson distribution, Poisson limit theorem, normal limit theorem, hidden Markov model.
Bibliographic databases:
Document Type: Article
UDC: 519.214.5
Language: Russian
Citation: N. M. Mezhennaya, “Estimator for the distribution of the numbers of runs in a random sequence controlled by stationary Markov chain”, Prikl. Diskr. Mat., 2017, no. 35, 14–28
Citation in format AMSBIB
\Bibitem{Mez17}
\by N.~M.~Mezhennaya
\paper Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 35
\pages 14--28
\mathnet{http://mi.mathnet.ru/pdm575}
\crossref{https://doi.org/10.17223/20710410/35/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm575
  • https://www.mathnet.ru/eng/pdm/y2017/i1/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :108
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025