Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 35, Pages 29–37
DOI: https://doi.org/10.17223/20710410/35/3
(Mi pdm572)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

On the rank of random quadratic form over finite field

A. V. Cheremushkin

Technology Federal State Unitary Enterprise "Research Institute Kvant", Moscow, Russia
Full-text PDF (588 kB) Citations (1)
References:
Abstract: The weights of Boolean functions of degree two are closely related to the ranks of quadratic forms. Though the weights of Reed–Muller codes are intensively researched in coding theory, the ranks of quadratic forms are not sufficiently studied. The article contains some asymptotic properties of the rank of a random quadratic form $f(x_1,\dots,x_n)=\sum_{1\le i,j\le n}a_{ij}x_ix_j$ over finite field $\mathrm{GF}(q)$. The cases of odd and even characteristics are separately considered. If $q$ is odd, then the $\mathrm{rank}(f)$ of $f$ is defined as the rank of the symmetric matrix $(b_{ij})$ with $b_{ii}=a_{ii}$, $b_{ij}=(a_{ij}+a_{ji})/2$, $j\neq i$, $1\le i,j\le n$. It is proved that, for any odd $q$ and $0<c<1$, the lower bound for the rank of the almost all quadratic forms $f$ in $n$ variables is the following: $\mathrm{rank}(f)\geq n-\left\lceil\sqrt{2\log_q n}+c\right\rceil+1$ as $n\to\infty$. In the case of even $q$, the $\mathrm{rank}(f)$ of $f$ is defined as the rank of a bilinear form $f(x+y)+f(x)+f(y)$. If $q=2^m$, $m\ge1$, $n=2k+\varepsilon$, $\varepsilon\in\{0,1\}$, $0<c<1$, then the lower bound for the rank of the almost all quadratic forms $f$ in $n$ variables is the following: $\mathrm{rank}(f)\geq 2k-2\left\lceil\sqrt{\dfrac12\log_qk}+\dfrac{c+(-1)^\varepsilon}4\right\rceil+2$ as $k\to\infty$. An another form of this inequality is $\mathrm{rank}(f)>n-\left\lceil\sqrt{2\log_q n}+c'\right\rceil+1$, where $0<c'<1$. As a corollary, an asymptotic lower bound for the minimal size $\beta_0(G)$ of a vertex cover of a graph $G$ with $n$ vertices is obtained. The vertex cover of $G$ is a set $S$ of vertices in $G$ such that every arc in $G$ is incident to a vertex in $S$. Let $n=2k+\varepsilon$, $\varepsilon=0,1$, $c>0$. Then for the almost all graphs $G$ with $n$ vertices, the lower bound for the minimal vertex cover size is the following: $\beta_0(G)\ge k-\left\lceil\sqrt{\dfrac12\log_2 k}+\dfrac{c+(-1)^\varepsilon}4\right\rceil+1$ as $k\to\infty$.
Keywords: finite field, symplectic group, quadratic form.
Bibliographic databases:
Document Type: Article
UDC: 519.719.1
Language: Russian
Citation: A. V. Cheremushkin, “On the rank of random quadratic form over finite field”, Prikl. Diskr. Mat., 2017, no. 35, 29–37
Citation in format AMSBIB
\Bibitem{Che17}
\by A.~V.~Cheremushkin
\paper On the rank of random quadratic form over finite field
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 35
\pages 29--37
\mathnet{http://mi.mathnet.ru/pdm572}
\crossref{https://doi.org/10.17223/20710410/35/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm572
  • https://www.mathnet.ru/eng/pdm/y2017/i1/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :98
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025