Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 35, Pages 89–101
DOI: https://doi.org/10.17223/20710410/35/8
(Mi pdm570)
 

This article is cited in 4 scientific papers (total in 4 papers)

Applied Graph Theory

Conditions of primitivity and exponent bounds for sets of digraphs

Y. E. Avezovaa, V. M. Fomichevabc

a National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
b Financial University under the Government of the Russian Federation, Moscow, Russia
c The Institute of Informatics Problems of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (632 kB) Citations (4)
References:
Abstract: For a set of digraphs $\hat\Gamma=\{\Gamma_1,\dots,\Gamma_p\}$, $p>1$, we present a criterion to be primitive. We do it in terms of characteristics of the multidigraph $\Gamma^{(p)}=\Gamma_1\cup\dots\cup\Gamma_p$ where each edge in $\Gamma_i$ is assigned the label $i$, $i=1,\dots,p$. Any walk of length $s$ in $\Gamma^{(p)}$ is assigned a word $w=w_1\dots w_s$ of length $s$ over the alphabet $\{1,\dots,p\}$, and the corresponding product of digraphs $\Gamma(w)=\Gamma_{w_1}\cdot\dots \cdot\Gamma_{w_s}$ is introduced. The walk is assigned the label $w^t$ if it is the concatenation of $t$ walks labeled with $w$. The multidigraph $\Gamma^{(p)}$ is called $w$-strongly connected if it is strongly connected and, for all its vertices $i$ and $j$, there exists a walk in $\Gamma^{(p)}$ from $i$ to $j$ labeled with $w^t$ for some natural number $t$. By the definition, the set of digraphs $\hat\Gamma$ is primitive if and only if $\Gamma(w)$ is primitive for some word $w$. Thus, we have the following criterion: the digraph $\Gamma(w)$ is primitive if and only if $\Gamma^{(p)}$ is $w$-strongly connected and has cycles labeled with $w^{t_1},\dots,w^{t_m}$, where $\mathrm{gcd}(t_1,\dots,t_m)=1$. As a corollary, we prove that the problem of recognizing the primitivity of $\hat\Gamma$ is algorithmically decidable. In the particular case, when the digraphs in $\hat\Gamma$ have the common set of cycles $\hat C=\{C_1,\dots,C_m\}$ of lengths $l_1,\dots,l_m$ respectively, $m\geq1$, $l_1\leq\dots\leq l_m$, the digraph $\Gamma(w)$, $w=w_1\dots w_s$, is primitive if any one of the following conditions holds: a) $m=1$ and $l_1=1$; b) $\mathrm{gcd}(l_1,\ldots,l_m)=s$; c) the digraph $C_1\cup\dots\cup C_m$ is connected and has quasi-Eulerian $\hat C$-cycle of length $s$. At last, for the set of digraphs $\hat\Gamma=\{\Gamma_0,\dots,\Gamma_{n-1}\}$ with vertex set $\{0,\dots,n-1\}$, where for some $l$, $n\geq l>1$, each $\Gamma_i$, $i\in\{0,\dots,n-1\}$, has a Hamiltonian cycle $(0,\dots,n-1)$ and the edge $(i,(i+l)\mod n)$, we prove the following criterion of primitivity and bounds for the exponent: the set $\hat\Gamma=\{\Gamma_0,\dots,\Gamma_{n-1}\}$ is primitive if and only if gcd$(n, l-1)=1$, and in this case $n-1\leq\exp\hat\Gamma\leq 2n-2$. The minimal subset of $\hat\Gamma=\{\Gamma_0,\dots,\Gamma_{n-1}\}$ with exponent $2n-2$ contains at most $n/d$ digraphs, where $d=\mathrm{gcd}(n,l)$. The presented results are used for evaluating mixing properties of cryptographic functions compositions.
Keywords: Wielandt's graph, primitive set of matrices (digraphs), exponent of digraph.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: Y. E. Avezova, V. M. Fomichev, “Conditions of primitivity and exponent bounds for sets of digraphs”, Prikl. Diskr. Mat., 2017, no. 35, 89–101
Citation in format AMSBIB
\Bibitem{AveFom17}
\by Y.~E.~Avezova, V.~M.~Fomichev
\paper Conditions of primitivity and exponent bounds for sets of digraphs
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 35
\pages 89--101
\mathnet{http://mi.mathnet.ru/pdm570}
\crossref{https://doi.org/10.17223/20710410/35/8}
Linking options:
  • https://www.mathnet.ru/eng/pdm570
  • https://www.mathnet.ru/eng/pdm/y2017/i1/p89
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025