Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2017, Number 35, Pages 38–47
DOI: https://doi.org/10.17223/20710410/35/4
(Mi pdm569)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical Methods of Cryptography

About $2$-cascade finite automata cryptographic generators and their cryptanalysis

G. P. Agibalov, I. A. Pankratova

National Research Tomsk State University, Tomsk, Russia
Full-text PDF (614 kB) Citations (5)
References:
Abstract: A cryptographic generator under consideration is a serial connectiom $G=A_1\cdot A_2$ of two finite state machines (finite automata) $A_1$ and $A_2$ both defined over the two-element field $\mathbb F_2$. The first one is an autonomous automaton $A_1=(\mathbb F_2^n,\mathbb F_2,g_1,f_1)$ with the state set $\mathbb F_2^n$, $n>1$, the output alphabet $\mathbb F_2$, a transition function $g_1\colon\mathbb F_2^n\to\mathbb F_2^n$, and an output function $f_1\colon\mathbb F_2^n\to\mathbb F_2$. The second one is a non-autonomous automaton $A_2=(\mathbb F_2,\mathbb F_2^n,\mathbb F_2,g_2,f_2)$ with the state set $\mathbb F_2^m$, $m>1$, the input and output alphabets $\mathbb F_2$, an output function $f_2\colon\mathbb F_2\times\mathbb F_2^n\to\mathbb F_2$, and a transition function $g_2\colon\mathbb F_2\times\mathbb F_2^m\to\mathbb F_2^m$, for which there exist a map $g\colon\mathbb F_2^m\to\mathbb F_2^m$ and some different integers $\delta$ and $\tau$ such that, for all $u\in\mathbb F_2$ and $y\in\mathbb F_2^m$, $g_2(u,y)=\neg ug^\delta(y)+ug^\tau(y)$, where $g^0(y)=y$ and $g^r(y)=g(g^{r-1}(y))$ for every integer $r\geq1$. Thus, the generator $G$ is a finite autonomous automaton $G=A_1\cdot A_2=(\mathbb F_2^n\times\mathbb F_2^m,\mathbb F_2,h, f)$, where $h\colon\mathbb F_2^n\times\mathbb F_2^m\to\mathbb F_2^n\times\mathbb F_2^m$ and $h(x,y)=(g_1(x),g_2(f_1(x),y))$, $f\colon\mathbb F_2^n\times\mathbb F_2^m\to\mathbb F_2$ and $f(x,y)=f_2(f_1(x),y)$, $x\in\mathbb F_2^n$, $y\in\mathbb F_2^m$. As we see, all the functions in the definition of $G$ are Boolean ones, and the functions $g_1$ and $g_2,g$ are vector functions of dimensions $n$ and $m$ respectively. Further, it is assumed that each of them belongs to a predetermined class of Boolean functions and the classes of functions $f_1$ and $f_2$ are denoted by $C_1$ and $C_2$ respectively. At any time moment $t=1,2,\dots$, the automaton $A_1$ goes from its state $x(t)$ to a state $x(t+1)=g_1(x(t))$ and produces an output symbol $u(t)=f_1(x(t))$, the automaton $A_2$ receives $u(t)$ and goes from its state $y(t)$ to a state $y(t+1)=g_2(u(t),y(t))$ and produces an output symbol $z(t)=f_2(u(t),y(t))$ which is the output symbol generated by $G$ at this moment. In general, a key of the generator can be defined as any non-empty subset of the set $\{x(1),y(1),f_1,g_1,f_2,g_2,g,\delta,\tau\}$. The cryptanalysis problem for $G$ is the following: given a finite beginning $\gamma=z(1)z(2)\dots z(l)$ of a sequence generated by $G$, find the generator key value. For solving the problem, the generator is described by a system of logical equations, connecting bits in $\gamma$ with the initial states and values of transition and output functions in automata $A_1$ and $A_2$. It is shown that in $G$ with the linear $A_2$, the key $y(1)$ is determined with the polynomial complexity by solving a system of linear equations and the key $(x(1),y(1))$ – by the linearization attack (trying different initial states of $A_1$) with the complexity $2^n$ which is much less than $2^{n+m}$ – the complexity of the bruitforce attack. For an arbitrary $G$ with the known $g_2$ and $f_2$, a method is proposed allowing to compute from $\gamma$ a string of the output sequence $\beta=u(1)u(2)\dots u(l)$ of $A_1$ and so to reveal two possibilities for cryptanalysis of this $G$: 1) to determine its key $(x(1),y(1))$ by the meet-in-the-middle attack with the complexity $2^m$ or 2) to reduce the cryptanalysis problem for $G$ to the cryptanalysis problem for $A_1$, that is, to determine the key of $A_1$ by $\beta$. The complexity of the method is polynomial if $y(1)$ is not included in the key and is not more than $2^m$ otherwise. In case when the key of an arbitrary $G$ is $f_1$, this key can be determined by identifying $f_1$ with a function $f\in C_1$ satisfying the equalities $f(x(t))=u(t)$, $t=1,2,\dots,l$. Similarly, if the key of $G$ is $f_2$, the determination of $f_2$ is reduced to the construction of a function $f\in C_2$ satisfying the equalities $f(u(t),y(t))=z(t)$, $t=1,2,\dots,l$. In connection with the last, it is told about some algorithms, known to the authors, for extending a partially defined Boolean function in a large set of variables to a function from a class of completely defined Boolean functions essentially depending on a little or bounded number of variables in this set.
Keywords: finite automaton, cryptographic generator, $(\delta,\tau)$-step generator, cryptanalysis, linearization attack, “devide and solve” attack, “devide–solve–substitute” attack, “meet-in-the middle” attack.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00354
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: G. P. Agibalov, I. A. Pankratova, “About $2$-cascade finite automata cryptographic generators and their cryptanalysis”, Prikl. Diskr. Mat., 2017, no. 35, 38–47
Citation in format AMSBIB
\Bibitem{AgiPan17}
\by G.~P.~Agibalov, I.~A.~Pankratova
\paper About $2$-cascade finite automata cryptographic generators and their cryptanalysis
\jour Prikl. Diskr. Mat.
\yr 2017
\issue 35
\pages 38--47
\mathnet{http://mi.mathnet.ru/pdm569}
\crossref{https://doi.org/10.17223/20710410/35/4}
Linking options:
  • https://www.mathnet.ru/eng/pdm569
  • https://www.mathnet.ru/eng/pdm/y2017/i1/p38
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :49
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024