|
This article is cited in 10 scientific papers (total in 10 papers)
Mathematical Backgrounds of Computer and Control System Reliability
Lower bounds for lengths of complete diagnostic tests for circuits and inputs of circuits
K. A. Popkov Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Abstract:
Let $D^P_1(n)$ ($D^P_0(n)$, $D^P_{0,1}(n)$) be the least length of a complete diagnostic test for the primary inputs of logical circuits implementing Boolean functions in $n$ variables and having constant faults of type $1$ (respectively $0$, both $0$ and $1$) on these inputs, $D^O_{B;\,1}(n)$ ($D^O_{B;\,0}(n)$, $D^O_{B;\,0,1}(n)$) be the least length of a complete diagnostic test for logical circuits consisting of logical gates in a basis $B$, implementing Boolean functions in $n$ variables, and having constant faults of type $1$ (respectively $0$, both $0$ and $1$) on outputs of the logical gates, and $B_2=\{x|y\}$, $B^*_2=\{x\uparrow y\}$, $B_3=\{x\&y,\overline x\}$, $B^*_3=\{x\vee y,\overline x\}$.
It is shown that the functions $D^P_1(n)$, $D^P_0(n)$, $D^O_{B_2;\,1}(n)$, $D^O_{B^*_2;\,0}(n)$, $D^O_{B_3;\,0,1}(n)$, $D^O_{B^*_3;\,0,1}(n)$ are not less than $\dfrac{2^{{n}/2}\cdot\sqrt[4]n}{2\sqrt{n+(\log_2 n)/2+2}}$ and
$
D^P_{0,1}(n)$ is not less than $2^{{n}/2}$ if $n$ is even, and is not less than
$\left\lfloor\dfrac{2\sqrt 2}3\cdot 2^{{n}/2}\right\rfloor$ if $n$ is odd.
Keywords:
logic circuit, fault, complete diagnostic test, test for inputs of circuits.
Citation:
K. A. Popkov, “Lower bounds for lengths of complete diagnostic tests for circuits and inputs of circuits”, Prikl. Diskr. Mat., 2016, no. 4(34), 65–73
Linking options:
https://www.mathnet.ru/eng/pdm564 https://www.mathnet.ru/eng/pdm/y2016/i4/p65
|
Statistics & downloads: |
Abstract page: | 185 | Full-text PDF : | 52 | References: | 45 |
|