Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2016, Number 4(34), Pages 38–49
DOI: https://doi.org/10.17223/20710410/34/3
(Mi pdm563)
 

Theoretical Backgrounds of Applied Discrete Mathematics

A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity

A. V. Pokrovskiy

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $f=f(x_1,\ldots,x_n)$ be a bijunctive Boolean function, that is, the multiplication of some disjunctions of two variables or their negations, $L_f=\{i_1,\ldots,i_{|L_f|}\}\subset\{1,\ldots,n\}$, and, for $\mathbf{y}=(y_1,\ldots,y_{|L_f|})\in\mathbb{F}_2^{|L_f|}$, the Boolean function $f_{i_1,\ldots,i_{|L_f|}}^{y_1,\ldots,y_{|L_f|}}$ obtained by substitution of $y_1,\ldots,y_{|L_f|}$ instead of $x_{i_1},\ldots,x_{i_{|L_f|}}$ respectively into $f(x_1,\ldots,x_n)$ is not const and is equivalent relatively the Jevons group to the function
$$ f_{d_{\mathbf{y}},m_{\mathbf{y}}}(\mathbf{x})= \begin{cases} (x_1\vee x_2)\cdot\ldots\cdot (x_{2d_{\mathbf{y}}-1}\vee x_{2d_{\mathbf{y}}})\cdot x_{2d_{\mathbf{y}}+1}\cdot\ldots\cdot x_{2d_{\mathbf{y}}+m_{\mathbf{y}}},\ \hbox{if}~1\leq d_{\mathbf{y}}\leq \lfloor n/2\rfloor,\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\ 1\leq m_{\mathbf{y}}\leq n-2d_{\mathbf{y}};\\ x_1\cdot\ldots\cdot x_m, \quad\hbox{if}~d_{\mathbf{y}}=0,1\leq m_{\mathbf{y}}\leq n; \\ (x_1\vee x_2)\cdot\ldots\cdot (x_{2d_{\mathbf{y}}-1}\vee x_{2d_{\mathbf{y}}}), \quad\hbox{if}~1\leq d_{\mathbf{y}}\leq \lfloor n/2\rfloor,m_{\mathbf{y}}=0. \end{cases} $$
Let $f_0=f_0(x_1,\ldots,x_n)$ be a Boolean function with the algebraic immunity AI$(f_0)$ satisfying the condition $1<k=\text{AI}(f_0)-2|L_f|$, $C=|\{(y_1,\ldots,y_{|L_f|})\in\mathbb{F}_2^{|L_f|}:f_{i_1,\ldots,i_{|L_f|}}^{y_1,\ldots,y_{|L_f|}}=\mathrm{const}\}|$, and dist$(f,f_0)$ is the Hamming distance between $f$ and $f_0$. Then
\begin{gather*} C\textstyle\sum\limits_{i=0}^{\mathrm{AI}(f_0)-2|L_f|-1}\binom{n-|L_f|}{i}+\sum\limits_{\substack{\mathbf{y}\in\mathbb{F}_2^{|L_f|}:\\f_{i_1,\ldots,i_{|L_f|}}^{y_1,\ldots,y_{|L_f|}}\neq\mathrm{const}}}\left(\sum_{i=0}^{k-1}\binom{n-|L_f|}{i}+\right.\\ +\textstyle\sum\limits_{p=0}^{n-|L_f|-2d_{\mathbf{y}}-m_{\mathbf{y}}}\sum\limits_{j=2d_{\mathbf{y}}+m_{\mathbf{y}}+p-k+1}^{d_{\mathbf{y}}}\left(2^j\binom{d_{\mathbf{y}}}{j}\binom{n-|L_f|-2d_{\mathbf{y}}-m_{\mathbf{y}}}{p}\right)-\\ -\left.\textstyle\sum\limits_{p=0}^{n-|L_f|-2d_{\mathbf{y}}-m_{\mathbf{y}}}\sum\limits_{j=0}^{k-1-p}\left(2^j\binom{d_{\mathbf{y}}}{j}\binom{n-|L_f|-2d_{\mathbf{y}}-m_{\mathbf{y}}}{p}\right)\right)\leq\mathrm{dist}(f,f_0). \end{gather*}
In cryptography, functions like $f_0$ and $f$ are widely used for solving systems of Boolean equations by respectively linearization and statistical approximation methods.
Keywords: algebraic immunity, bijunctive functions, nonlinearity, annihilator, distance between functions.
Bibliographic databases:
Document Type: Article
UDC: 519.1, 519.7
Language: Russian
Citation: A. V. Pokrovskiy, “A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity”, Prikl. Diskr. Mat., 2016, no. 4(34), 38–49
Citation in format AMSBIB
\Bibitem{Pok16}
\by A.~V.~Pokrovskiy
\paper A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity
\jour Prikl. Diskr. Mat.
\yr 2016
\issue 4(34)
\pages 38--49
\mathnet{http://mi.mathnet.ru/pdm563}
\crossref{https://doi.org/10.17223/20710410/34/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm563
  • https://www.mathnet.ru/eng/pdm/y2016/i4/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :69
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024