Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2016, Number 4(34), Pages 5–16
DOI: https://doi.org/10.17223/20710410/34/1
(Mi pdm561)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theoretical Backgrounds of Applied Discrete Mathematics

The linear spectrum of quadratic APN functions

A. A. Gorodilova

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (730 kB) Citations (4)
References:
Abstract: Almost perfect nonlinear (APN) functions are studied. We introduce the linear spectrum $\Lambda^F = (\lambda_0^F, \ldots, \lambda_{2^n-1}^F)$ of a quadratic APN function $F$, where $\lambda_k^F$ equals the number of linear functions $L$ such that $|\{a\in\mathbb{F}_2^n\setminus\{\mathbf{0}\}: B_a(F) = B_a(F+L)\}| = k$ and $B_a(F) = \{F(x)+F(x+a): x\in\mathbb{F}_2^n\}$. We prove that $\lambda_k^F=0$ for all even $k \leqslant 2^n-2$ and for all $k<(2^n-1)/3$, where $F$ is a quadratic APN function in even number of variables $n$. Linear spectra for APN functions in small number of variables $n=3,4,5,6$ are computed and presented. We consider APN Gold functions $F(x)=x^{2^k+1}$ for $(k,n)=1$ and prove that $\lambda^F_{2^n-1}=2^{n+n/2}$ if $n=4t$ for some $t$ and $k = n/2 \pm 1$, and $\lambda^F_{2^n-1} = 2^{n}$ otherwise.
Keywords: APN function, associated Boolean function, linear spectrum, Gold function.
Funding agency Grant number
Russian Foundation for Basic Research 15-31-20635_мол_а_вед
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0314-2015-0011
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. A. Gorodilova, “The linear spectrum of quadratic APN functions”, Prikl. Diskr. Mat., 2016, no. 4(34), 5–16
Citation in format AMSBIB
\Bibitem{Gor16}
\by A.~A.~Gorodilova
\paper The linear spectrum of quadratic APN functions
\jour Prikl. Diskr. Mat.
\yr 2016
\issue 4(34)
\pages 5--16
\mathnet{http://mi.mathnet.ru/pdm561}
\crossref{https://doi.org/10.17223/20710410/34/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm561
  • https://www.mathnet.ru/eng/pdm/y2016/i4/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :67
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024