Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2016, Number 3(33), Pages 78–84
DOI: https://doi.org/10.17223/20710410/33/6
(Mi pdm551)
 

This article is cited in 9 scientific papers (total in 9 papers)

Applied Graph Theory

The new universal estimation for exponents of graphs

V. M. Fomichevabc

a Financial University under the Government of the Russian Federation, Moscow, Russia
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
c The Institute of Informatics Problems of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (573 kB) Citations (9)
References:
Abstract: It is shown that, for a $n$-vertex primitive digraph $\Gamma$ with a system of directed circuits $C_1,\dots,C_k$ of lengths $l_1,\dots,l_k$ respectively, $\exp\Gamma\leq n(r+1)+g(l_1,\dots,l_k)+L$, where $r$ is the number of connected components in the digraph $C_1\cup\dots\cup C_k$, $g(l_1,\dots,l_k)$ is the Frobenius's number, and $L$ is a linear combination of the lengths of some directed circuits in $\Gamma$. This estimation is mostly better than other estimations known for many cases. Some more precise expressions of it are given for some particular types of graphs. The value of the estimation varies from $\mathrm O(n)$ to $\mathrm O(n^2)$ as $n$ increases indefinitely and equals $\mathrm O(n^2)$, only if the length of the shortest directed circuit is $\mathrm O(n)$. For Wielandt's graphs, this estimation coincides with the Wielandt's one.
Keywords: Frobenius's number, primitive graph, exponent of graph.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. M. Fomichev, “The new universal estimation for exponents of graphs”, Prikl. Diskr. Mat., 2016, no. 3(33), 78–84
Citation in format AMSBIB
\Bibitem{Fom16}
\by V.~M.~Fomichev
\paper The new universal estimation for exponents of graphs
\jour Prikl. Diskr. Mat.
\yr 2016
\issue 3(33)
\pages 78--84
\mathnet{http://mi.mathnet.ru/pdm551}
\crossref{https://doi.org/10.17223/20710410/33/6}
Linking options:
  • https://www.mathnet.ru/eng/pdm551
  • https://www.mathnet.ru/eng/pdm/y2016/i3/p78
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024