Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2015, Number 4(30), Pages 24–31
DOI: https://doi.org/10.17223/20710410/30/2
(Mi pdm524)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theoretical Foundations of Applied Discrete Mathematics

On the complexity of circuits in bases containing monotone elements with zero weights

V. V. Kochergina, A. V. Mikhailovichb

a Lomonosov Moscow State University, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (644 kB) Citations (4)
References:
Abstract: Complexity of Boolean functions and Boolean function systems realization in a base consisting of all monotone functions and a finite number of non-monotone functions is researched. The weight of any monotone function in the base is supposed to be 0, the weight of non-monotone function in it is positive. A. A. Markov studied special case of this base, where the non-monotone part consisted of the negation function. He showed that the minimum number of negation elements which are needed to realize an arbitrary function $f$ equals $\lceil\log_2(d(f)+1)\rceil$. Here $d(f)$ is the maximum number of value changes from 1 to 0 over all increasing chains of arguments tuples. The aim of this paper is to prove that the complexity of a Boolean function $f$ realization equals $\rho\lceil\log_2(d(f)+1)\rceil-\mathrm O(1)$, where $\rho$ is the minimum weight of non-monotone elements in the base. Similar generalization of the classical Markov's result concerning the realization of Boolean function systems is obtained too.
Keywords: Boolean circuits, logic circuits, bases with zero weight elements, Boolean function complexity, circuit complexity, inversion complexity, Markov's theorem.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: V. V. Kochergin, A. V. Mikhailovich, “On the complexity of circuits in bases containing monotone elements with zero weights”, Prikl. Diskr. Mat., 2015, no. 4(30), 24–31
Citation in format AMSBIB
\Bibitem{KocMik15}
\by V.~V.~Kochergin, A.~V.~Mikhailovich
\paper On the complexity of circuits in bases containing monotone elements with zero weights
\jour Prikl. Diskr. Mat.
\yr 2015
\issue 4(30)
\pages 24--31
\mathnet{http://mi.mathnet.ru/pdm524}
\crossref{https://doi.org/10.17223/20710410/30/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm524
  • https://www.mathnet.ru/eng/pdm/y2015/i4/p24
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :78
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025