Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2015, Number 2(28), Pages 97–102
DOI: https://doi.org/10.17223/20710410/28/10
(Mi pdm508)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational Methods in Discrete Mathematics

On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion

M. V. Nikolaev

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Discrete logarithm problem in an interval in a finite group $G=\langle P\rangle$ consists in solving the equation $Q=nP$ with respect to $n\in\{-N/2,\dots,N/2\}$ for the specified $P,Q\in G$ and $0<N<|G|-1$. If the group $G$ has an inversion, which may be computed significantly faster than the group operation, then, similarly to the solution of the classical discrete logarithm, we may speed up the algorithm. In 2010, S. Galbraith and R. Ruprai proposed an algorithm solving this problem with the average complexity $(1{,}36+\text o(1))\sqrt N$ group operations in $G$ where $N\to\infty$. We show that the average complexity of the algorithm for finding the solution of the discrete logarithm problem in interval equals $(1+\varepsilon)\sqrt{\pi N/2}$ group operations.
Keywords: discrete logarithm problem in interval, Gaudry–Schost algorithm.
Bibliographic databases:
Document Type: Article
UDC: 512.54.05+519.712.4
Language: Russian
Citation: M. V. Nikolaev, “On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion”, Prikl. Diskr. Mat., 2015, no. 2(28), 97–102
Citation in format AMSBIB
\Bibitem{Nik15}
\by M.~V.~Nikolaev
\paper On the complexity of discrete logarithm problem in an interval in a~finite cyclic group with efficient inversion
\jour Prikl. Diskr. Mat.
\yr 2015
\issue 2(28)
\pages 97--102
\mathnet{http://mi.mathnet.ru/pdm508}
\crossref{https://doi.org/10.17223/20710410/28/10}
Linking options:
  • https://www.mathnet.ru/eng/pdm508
  • https://www.mathnet.ru/eng/pdm/y2015/i2/p97
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :69
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024