Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2015, Number 1(27), Pages 52–61 (Mi pdm488)  

This article is cited in 3 scientific papers (total in 3 papers)

Pseudorandom Generators

Features of maximal period polynomial generators over the Galois ring

D. M. Ermilov

Laboratory TVP, Moscow, Russia
Full-text PDF (616 kB) Citations (3)
References:
Abstract: For a polynomial mapping over the Galois ring $R=\mathrm{GR}(q^n,p^n)$ with the cardinality $q^n$ and characteristic $p^n$, the maximal length of a cycle equals $q(q-1)p^{n-2}$. In this paper, we present an algorithm for constructing the system of representatives of all maximal length cycles and an algorithm for constructing an element in a cycle of maximal length for a polynomial substitution $f\in R[x]$. The complexity of the first algorithm equals $d(q-1)q^{n-1}$ multiplication operations and $d(q-1)q^{n-1}$ addition operations in $R$, the complexity of the second algorithm equals $dq$ multiplication operations and $dq$ addition operations in $R$ where $d=\deg(f)$.
Keywords: nonlinear recurrent sequences, Galois ring.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: D. M. Ermilov, “Features of maximal period polynomial generators over the Galois ring”, Prikl. Diskr. Mat., 2015, no. 1(27), 52–61
Citation in format AMSBIB
\Bibitem{Erm15}
\by D.~M.~Ermilov
\paper Features of maximal period polynomial generators over the Galois ring
\jour Prikl. Diskr. Mat.
\yr 2015
\issue 1(27)
\pages 52--61
\mathnet{http://mi.mathnet.ru/pdm488}
Linking options:
  • https://www.mathnet.ru/eng/pdm488
  • https://www.mathnet.ru/eng/pdm/y2015/i1/p52
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :105
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025