Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2013, Number 4(22), Pages 16–21 (Mi pdm433)  

This article is cited in 2 scientific papers (total in 2 papers)

Theoretical Foundations of Applied Discrete Mathematics

Permutation polynomials over residue class rings

A. V. Karpov

Tomsk State University, Tomsk, Russia
Full-text PDF (606 kB) Citations (2)
References:
Abstract: Problems of finding inverse for a permutation polynomial over the ring $\mathbb Z_{p^k}$ for prime $p$ and any $k>1$ are studied. Necessary and sufficient conditions for two permutation polynomials to be inverse polynomials modulo prime power are found. Given a known inverse polynomial modulo $p^2$, a formula for inverse polynomial modulo $p^k$ is pointed. Given a pair of inverse polynomials modulo $p^k$, a method for constructing other such pairs is proposed.
Keywords: permutation polynomials, residue class rings, polynomial permutations.
Document Type: Article
UDC: 512.714
Language: Russian
Citation: A. V. Karpov, “Permutation polynomials over residue class rings”, Prikl. Diskr. Mat., 2013, no. 4(22), 16–21
Citation in format AMSBIB
\Bibitem{Kar13}
\by A.~V.~Karpov
\paper Permutation polynomials over residue class rings
\jour Prikl. Diskr. Mat.
\yr 2013
\issue 4(22)
\pages 16--21
\mathnet{http://mi.mathnet.ru/pdm433}
Linking options:
  • https://www.mathnet.ru/eng/pdm433
  • https://www.mathnet.ru/eng/pdm/y2013/i4/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:340
    Full-text PDF :171
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024