Loading [MathJax]/jax/output/CommonHTML/jax.js
Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2013, Number 2(20), Pages 14–18 (Mi pdm407)  

This article is cited in 7 scientific papers (total in 7 papers)

Theoretical Foundations of Applied Discrete Mathematics

Lower and upper bounds for the affinity order of transformations of Boolean vector spaces

S. P. Gorshkova, A. V. Dvinyaninovb

a Institute of Cryptography, Communications and Informatics, Moscow, Russia
b TVP, Moscow, Russia
Full-text PDF (573 kB) Citations (7)
References:
Abstract: Let Φn be the set of all transformations of the Boolean vector space Vn. Affinity order of a mapping FΦn is the least order of the set Vn partition with the property: for every its block there exists an affine mapping A:VnVn being equivalent to F on this block. Affinity order of Φn is the greatest order of FΦn. Upper and lower bounds for the affinity order of Φn are given in the article. These results can be used for estimating complexity of some techniques in Boolean equations resolving.
Keywords: transformation of Boolean vector space, affine mapping, solution complexity of Boolean equations.
Document Type: Article
UDC: 510.52
Language: Russian
Citation: S. P. Gorshkov, A. V. Dvinyaninov, “Lower and upper bounds for the affinity order of transformations of Boolean vector spaces”, Prikl. Diskr. Mat., 2013, no. 2(20), 14–18
Citation in format AMSBIB
\Bibitem{GorDvi13}
\by S.~P.~Gorshkov, A.~V.~Dvinyaninov
\paper Lower and upper bounds for the affinity order of transformations of Boolean vector spaces
\jour Prikl. Diskr. Mat.
\yr 2013
\issue 2(20)
\pages 14--18
\mathnet{http://mi.mathnet.ru/pdm407}
Linking options:
  • https://www.mathnet.ru/eng/pdm407
  • https://www.mathnet.ru/eng/pdm/y2013/i2/p14
  • This publication is cited in the following 7 articles:
    1. V. G. Ryabov, “Udalennost vektornykh bulevykh funktsii ot affinnykh analogov (po sledam Vosmoi mezhdunarodnoi olimpiady po kriptografii)”, Matem. vopr. kriptogr., 15:1 (2024), 127–142  mathnet  crossref
    2. V. G. Ryabov, “Nelineinost vektornykh funktsii nad konechnymi polyami”, Diskret. matem., 36:2 (2024), 50–70  mathnet  crossref
    3. V. G. Ryabov, “Characteristics of nonlinearity of vectorial functions over finite fields”, Matem. vopr. kriptogr., 14:2 (2023), 123–136  mathnet  crossref
    4. V. G. Ryabov, “Novye granitsy nelineinosti PN-funktsii i APN-funktsii nad konechnymi polyami”, Diskret. matem., 35:3 (2023), 45–59  mathnet  crossref
    5. V. G. Ryabov, “Nonlinearity of APN functions: comparative analysis and estimates”, PDM, 2023, no. 61, 15–27  mathnet  crossref
    6. V. G. Ryabov, “Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues”, Discrete Math. Appl., 33:6 (2023), 387–403  mathnet  crossref  crossref
    7. V. G. Ryabov, “K voprosu o priblizhenii vektornykh funktsii nad konechnymi polyami affinnymi analogami”, Matem. vopr. kriptogr., 13:4 (2022), 125–146  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :105
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025