Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2012, Number 3(17), Pages 108–120 (Mi pdm372)  

This article is cited in 2 scientific papers (total in 2 papers)

Discrete Models for Real Processes

Invariants of reaction-diffusion cellular automata models

O. L. Bandman

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: A concept of cellular automata (CA) model invariant is introduced. The invariant is a dimensionless value characterizing the process under simulation which is independent from mathematical description of the process and may be expressed both in model terms and in their physical counterparts. Invariants are important in practical computer simulation as a basis for calculating scaling coefficients needed for transition from CA model values to habitual physical quantities and vice versa. Invariants of some typical CA models of reaction-diffusion processes are presented. Based on the invariant a general approach to solve CA-modelling scaling problem is proposed.
Keywords: cellular automaton, cellular-automata simulation, nonlinear spatial dynamics, reaction-diffusion processes, scaling invariants.
Document Type: Article
UDC: 621.391.1+004.7
Language: Russian
Citation: O. L. Bandman, “Invariants of reaction-diffusion cellular automata models”, Prikl. Diskr. Mat., 2012, no. 3(17), 108–120
Citation in format AMSBIB
\Bibitem{Ban12}
\by O.~L.~Bandman
\paper Invariants of reaction-diffusion cellular automata models
\jour Prikl. Diskr. Mat.
\yr 2012
\issue 3(17)
\pages 108--120
\mathnet{http://mi.mathnet.ru/pdm372}
Linking options:
  • https://www.mathnet.ru/eng/pdm372
  • https://www.mathnet.ru/eng/pdm/y2012/i3/p108
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025