Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2011, Number 3(13), Pages 12–16 (Mi pdm331)  

This article is cited in 3 scientific papers (total in 3 papers)

Theoretical Foundations of Applied Discrete Mathematics

On the complexity of proving that a Boolean function is not a binary read-once

A. A. Voronenko

M. V. Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (572 kB) Citations (3)
References:
Abstract: We show that it is sufficiently to present a linear number of values of a given Boolean function to prove that it is not read-once over the binary basis.
Keywords: read-once Boolean function, proof complexity.
Document Type: Article
UDC: 519.716
Language: Russian
Citation: A. A. Voronenko, “On the complexity of proving that a Boolean function is not a binary read-once”, Prikl. Diskr. Mat., 2011, no. 3(13), 12–16
Citation in format AMSBIB
\Bibitem{Vor11}
\by A.~A.~Voronenko
\paper On the complexity of proving that a~Boolean function is not a~binary read-once
\jour Prikl. Diskr. Mat.
\yr 2011
\issue 3(13)
\pages 12--16
\mathnet{http://mi.mathnet.ru/pdm331}
Linking options:
  • https://www.mathnet.ru/eng/pdm331
  • https://www.mathnet.ru/eng/pdm/y2011/i3/p12
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :78
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024