Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2011, supplement № 4, Pages 76–78 (Mi pdm322)  

Applied Automata Theory

On skeleton automata

V. N. Salii

Saratov State University named after N. G. Chernyshevsky, Saratov
References:
Abstract: A skeleton automaton is an automaton in which the relation of mutual accessibility of states is the identity relation. We prove that automata that admit a regular enumeration of states are exactly skeleton automata. It is shown how for a given automaton one can construct an automaton with minimal number of states that has the same subautomata lattice, and is necessarily a skeleton automaton. A procedure is proposed to obtain a skeleton automaton from a given automaton by removal of minimal number of arcs in its transition diagram.
Document Type: Article
UDC: 512.5
Language: Russian
Citation: V. N. Salii, “On skeleton automata”, Prikl. Diskr. Mat., 2011, supplement № 4, 76–78
Citation in format AMSBIB
\Bibitem{Sal11}
\by V.~N.~Salii
\paper On skeleton automata
\jour Prikl. Diskr. Mat.
\yr 2011
\pages 76--78
\issueinfo supplement № 4
\mathnet{http://mi.mathnet.ru/pdm322}
Linking options:
  • https://www.mathnet.ru/eng/pdm322
  • https://www.mathnet.ru/eng/pdm/y2011/i13/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :73
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024