Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2010, supplement № 3, Pages 44–45 (Mi pdm223)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical Methods of Steganography

About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix

A. M. Shoytov

Moscow State Institute of Radio-Engineering, Electronics and Automation, Moscow
Full-text PDF (378 kB) Citations (3)
References:
Abstract: The known square root law of steganographic capacity spreads to Markov chains with unknown transition probability matrix.
Document Type: Article
UDC: 519.651
Language: Russian
Citation: A. M. Shoytov, “About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix”, Prikl. Diskr. Mat., 2010, supplement № 3, 44–45
Citation in format AMSBIB
\Bibitem{Sho10}
\by A.~M.~Shoytov
\paper About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix
\jour Prikl. Diskr. Mat.
\yr 2010
\pages 44--45
\issueinfo supplement № 3
\mathnet{http://mi.mathnet.ru/pdm223}
Linking options:
  • https://www.mathnet.ru/eng/pdm223
  • https://www.mathnet.ru/eng/pdm/y2010/i12/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :122
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024